K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

a) Ta có: \(n^2+4n+3=\left(n+1\right)\left(n+3\right)\)

Mà n lẻ \(\Leftrightarrow n=2k+1\)( \(k\in Z\) )

\(\Leftrightarrow\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=\left(2k+2\right)\left(2k+4\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên \(\left(k+1\right)\left(k+2\right)⋮2\)

\(\Rightarrow4\left(k+1\right)\left(k+2\right)⋮4\cdot2=8\)( đpcm )

b) \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ nên \(n=2p+1\) ( \(q\in Z\) )

Khi đó : \(\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(2p+1+3\right)\left(2q+1-1\right)\left(2q+1+1\right)\)

\(=\left(2q+4\right)\cdot2q\cdot\left(2q+2\right)\)

\(=8q\left(q+1\right)\left(q+2\right)\)

\(q\left(q+1\right)\left(q+2\right)\) là tích 3 số nguyên liên tiếp nên \(\left\{{}\begin{matrix}q\left(q+1\right)\left(q+2\right)⋮3\\q\left(q+1\right)\left(q+2\right)⋮2\end{matrix}\right.\)

\(\Rightarrow q\left(q+1\right)\left(q+2\right)⋮3\cdot2=6\)

\(\Rightarrow8q\left(q+1\right)\left(q+2\right)⋮8\cdot6=48\)( đpcm )

8 tháng 8 2019

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\) n le => n=2k+1 \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n+3\right)=2k\left(2k+2\right)\left(2k+4\right)=8k\left(k+1\right)\left(k+2\right)\) k và k+1 là 2 stn liên tiếp =>\(k\left(k+1\right)⋮2\Rightarrow8k\left(k+1\right)⋮16\)

k;k+1;k+2 là 3 stn liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\Rightarrow n^3+3n^2-n-3⋮3.16=48\left(\left(3,16\right)=48\right)\)

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

4 tháng 10 2016

 xét n^2+4n+3= n^2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n^2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n^2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2 Vậy ...... chia hết cho 8

26 tháng 11 2015

Ta có :

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

ko là số cp

 

14 tháng 6 2017

\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)

b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).

14 tháng 6 2017

Câu hỏi của CoRoI - Toán lớp 8 - Học toán với OnlineMath

29 tháng 9 2019

đề sai nha bạn

đề kiểu j vậy bn

mk chịu

14 tháng 12 2016

ta co n^3+3n^2-n-3=n^2(n+3)/(n+3)=(n^2-1)(n+3)=(n-1)(n+1)(n+3)

doi voi (n+1)(n+3) la hai so lien tiep cach nhau 2 don vi thi n la so le se chia het 8

nhung voi n-1 neu n=1 thi ket qua cua ca h se bang 0 nen toi thay de bai nay thieu dieu kien cua n phai la so le khac 1

10 tháng 10 2017

n=1 thế thôi

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120