K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

m^3 - m = (m^2-1)m = (m-1)(m+1)m là tích 3 stn liên tiếp -> chia hết cho 6

29 tháng 9 2019
Ta có m^3-m=m(m^2-1)=m(m-1)(m+1)=(m-1)m(m+1) Đây là tích 3 số nguyên liên tiếp nên chia hết cho 3
10 tháng 8 2016

M = 4x2 + 4x = 4x(x+1) luôn chia hết cho 4

5 tháng 11 2016

a/ \(m^3-m=m\left(m^2-1\right)=m\left(m-1\right)\left(m+1\right)\)

Đây là 3 số nguyên liên tiếp nên chia hết cho 6

24 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)

hay \(n\left(n-1\right)\left(n+1\right)⋮6\)

30 tháng 4 2018

:3 Số 'm' phải là số lẻ nhé cậu 

Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)

Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)

Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)

Do m lẻ nên \(S⋮2018=1009.2⋮1009\)

Vậy \(S⋮1009\)

Mặt khác ta lại có 

\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\)   \(⋮2017\)

=> \(S⋮2017\)

Mà (1009,2017) = 1 

=> \(S⋮2017.1009=......\)

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta

9 tháng 8 2016

(2n+3)^2-9

=4n^2+12n

=4( n^2+3n) chia hết cho 4

10 tháng 8 2016

Cam on