K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

:3 Số 'm' phải là số lẻ nhé cậu 

Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)

Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)

Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)

Do m lẻ nên \(S⋮2018=1009.2⋮1009\)

Vậy \(S⋮1009\)

Mặt khác ta lại có 

\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\)   \(⋮2017\)

=> \(S⋮2017\)

Mà (1009,2017) = 1 

=> \(S⋮2017.1009=......\)

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

9 tháng 8 2016

(2n+3)^2-9

=4n^2+12n

=4( n^2+3n) chia hết cho 4

10 tháng 8 2016

Cam on

10 tháng 8 2016

M = 4x2 + 4x = 4x(x+1) luôn chia hết cho 4

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

20 tháng 6 2016

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n=-3n-2n=-5n chia hết cho 5

Vậy biểu thức n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n

15 tháng 6 2020

Ta xét: 

\(n^{n-1}-1=\left(n-1\right)\left(n^{n-2}+n^{n-3}+n^{n-4}+...+n^3+n^2+n+1\right)\)

\(=\left(n-1\right)\left(n^{n-2}+n^{n-3}+n^{n-4}+...+n^2+n+1+\left(n-1\right)-\left(n-1\right)\right)\)

\(=\left(n-1\right)\left[\left(n^{n-2}-1\right)+\left(n^{n-3}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(n-1\right)\right]\)\(⋮\left(n-1\right)^2\)

=> \(n^n-n^2+n-1=\left(n^n-n\right)-\left(n^2-2n+1\right)=n\left(n^{n-1}-1\right)-\left(n-1\right)^2\)\(⋮\left(n-1\right)^2\)