Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:1)CMR với mọi số m,n nguyên thì:a)n^2[(n^2)-1] chia hết cho 12?
A = n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12
Ai kết bạn vs mình ko mình hết lượt rồi
Ta có n(n+1) chia hết cho 2 với mọi n E N.
Với n=3k ta có 3k(3k+1)(6k+1) chia hết cho 3 và tích chia hết cho 6
n=3k+1 ta có (3k+1)(3k+2)(6k+3)=3(3k+1)(3k+2)(2k+1) chia hết cho 6
n=3k+2 ta có (3k+2)(3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) chia hết cho 6. kết hợp các điều trên ta có đpcm
Ta có n(n+1) chia hết cho 2 với mọi n E N.
Với n=3k ta có 3k(3k+1)(6k+1) chia hết cho 3 và tích chia hết cho 6
n=3k+1 ta có (3k+1)(3k+2)(6k+3)=3(3k+1)(3k+2)(2k+1) chia hết cho 6
n=3k+2 ta có (3k+2)(3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) chia hết cho 6. kết hợp các điều trên ta có đpcm
k nha ban hien
Do \(n\) và \(n+1\) là hai số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮2\)
Trường hợp 1: \(n=3k\)
Ta có: \(n⋮3\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮3\)
Trường hợp 2: \(n=3k+1\)
Ta có \(2n+7=2\left(3k+1\right)+7=6k+9⋮3\)
\(\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮3\)
Trường hợp 3: \(n=3k+2\)
Ta có \(n+1=3k+2+1=3k+3⋮3\)
\(\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+7\right)\) vừa chia hết cho 2, vừa chia hết cho 3 nên nó chia hết cho 6.
Ta có: \(\orbr{\begin{cases}2n+1=4m+1\forall n⋮2\\2n+1=4m+3\forall n̸⋮2\end{cases}}\)n E N
Nếu 2n + 1 = 4m + 1
=> 22n+1 + 32n+1 = 24m+1 + 34m+1 = ...2 + ...3 = ...5 chia hết cho 5 [theo qui tắc về chữ số tận cùng bạn xem tại https://www.youtube.com/watch?v=p82ydQCe8jg]
Nếu 2n + 1 = 4m + 3
=> 22n+1 + 32n+1 = 24m+3 + 34m + 3 = ...8 + ...7 = ...5 chia hết cho 5 [theo qui tắc về chữ số tận cùng]
Vậy 22n+1 + 32n+1 chia hết cho 5 với mọi n E N
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHÉ
a: Gọi d=ƯCLN(16n+5;6n+2)
=>16n+5 và 6n+2 chia hết cho d
=>48n+15-48n-16 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>ĐPCM
n:2n+1/2n(n+1)
2n+1/2 n.n + 1/2
2n+1/2.2n+1/2
2n.1,5n+0,5
3,5n+0,5
0,5.7n+0,5
0,5.(7n+1)