Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
a) Đặt \(d=\left(n+1,2n+3\right)\).
Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)
Suy ra \(d=1\).
Do đó ta có đpcm.
b) Bạn làm tương tự ý a).
c) Đặt \(d=\left(3n+2,5n+3\right)\).
Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).
Suy ra \(d=1\).
Gọi d là ƯCLN của 2n + 1 và 3 n + 2
Ta có
2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)
3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )
Từ (1), (2)
=> 6n+4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN ( 2n + 1 : 3n + 2 ) = 1
=> Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z
Phương pháp chứng minh 1 p/s tối giản là :
Chứng minh ƯCLN của tử và mẫu = 1
Còn cách làm : Tự làm
Đặt UC(n+2,2n+3)=d
Ta có:
\(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}2\left(n+2\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow1=d\)
Vậy phân số tối giản
gọi ucln của n+2va 2n+3 là d
ta có:
n+2=2n+4;2n+3 du nguyen
2n+4-2n+3
=>1chia het cho d
vi d la ucln cua 1=>d=1
=>do la phan so toi gian
Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)
\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)
Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:
\(2n\left(n+2\right)⋮2\)
=> \(2n\left(n+2\right)\)là số chẵn
mà 23 là số lẻ
\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản
\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản
Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)
Giải
Đặt \(\left(n+3,2n+5\right)=d\)
\(\Leftrightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[2\left(n+3\right)\right]⋮d\\\left(2n+5\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left[2\left(n+3\right)-\left(2n+5\right)\right]⋮d\)
\(\Leftrightarrow\left[2n+6-2n-5\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{2n+5}\) là phân số tối giản (đpcm)