Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)
= a2 - 2a - a + 2 + a2 + 4a - 3a - 12 - 2a2 - 5a + 34
= (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)
= -7a + 24
=> VT = VP
=> đpcm
b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)
= (a3 - b3) - (a3 + b3)
= a3 - b3 - a3 - b3
= -2b3
=> VT = VP
=> Đpcm
Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)
\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)
\(\Rightarrow a^2+b^2\le8\)
\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)
\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)
\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)
\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
\(a^2+5b^2-4ab+2a-6b+3\)
\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)
\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)
Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)
Dùng phép biến đổi tương đương thôi bạn ơi!