K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Đinh Phương Linh tham khảo nha:

 2sin²2x + sin7x - 1 = sinx <=> sin7x - sinx - cos4x = 0 
<=> 2cos4x.sin3x - cos4x = 0 <=> cos4x.(2sin3x -1) = 0 

<=> [ cos4x = 0 
----- [ sin3x = 1/2 

<=> [ x = pi/8 + kpi/4 
----- [ x = pi/18 + 2kpi/3 
----- [ x = 5pi/18 + 2kpi 

24 tháng 9 2017

\(A=\frac{2047}{1024}\)

NV
12 tháng 10 2020

\(A=sinx.cosx+\frac{1-cos^2x}{1+\frac{cosx}{sinx}}+\frac{1-sin^2x}{1+\frac{sinx}{cosx}}\)

\(=sinx.cosx+\frac{\left(sinx-sinx.cosx\right)\left(1+cosx\right)}{1+cosx}+\frac{\left(cosx-sinx.cosx\right)\left(1+sinx\right)}{1+sinx}\)

\(=sinx.cosx+sinx-sinx.cosx+cosx-sinx.cosx\)

\(=sinx+cosx-sinx.cosx\)

28 tháng 7 2018

tích mình với

ai tích mình

mình tích lại

thanks

28 tháng 7 2018

Sin 1 slot xíu nữa làm

6 tháng 8 2021

\(M=sinx.cosx+\dfrac{sin^2x}{1+cotx}+\dfrac{cos^2x}{1+tanx}\)

\(=sinx.cosx+\dfrac{sin^2x}{\dfrac{cosx+sinx}{sinx}}+\dfrac{cos^2x}{\dfrac{cosx+sinx}{cosx}}\)

\(=sinx.cosx+\dfrac{sin^3x+cos^3x}{cosx+sinx}\)

\(=sinx.cosx+\dfrac{\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)}{cosx+sinx}\)

\(=sinx.cosx+sin^2x+cos^2x-sinx.cosx\)

\(=sin^2x+cos^2x=1\)