Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://diendantoanhoc.net/topic/104068-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-b2-4ac-kh%C3%B4ng-ph%E1%BA%A3i-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Xem ở link này (mình gửi cho)
Học tốt!!!!!!!!
Từ gt \(\Rightarrow ab-ac-bc+c^2=c^2\)
\(\Leftrightarrow ab=ac+bc\)
\(\Leftrightarrow ab=c\left(a+b\right)\)
\(\Leftrightarrow abc=c^2\left(a+b\right)\)
Bây giờ chỉ cần chứng minh ( a + b ) là số chính phương nx là xog !
Gọi \(ƯCLN\left(a-c;b-c\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}\Rightarrow}\left(a-c\right)-\left(b-c\right)⋮d\)
\(\Rightarrow a-b⋮d\)
Mà \(\left(a;b\right)=1\)
\(\Rightarrow d=1\)
Hay \(\left(a-c;b-c\right)=1\)
Mà \(\left(a-c\right)\left(b-c\right)=c^2\)là số chính phường
Nên a - c và b - c đều là số chính phương
Đặt \(\hept{\begin{cases}a-c=x^2\\b-c=y^2\end{cases}\left(x;y\inℕ\right)}\)
\(\Rightarrow x^2.y^2=\left(a-c\right)\left(b-c\right)\)
\(\Leftrightarrow x^2y^2=c^2\)
\(\Leftrightarrow xy=c\)( Do xy và c đều dương )
Ta có : \(\left(a-c\right)+\left(b-c\right)=x^2+y^2\)
\(\Leftrightarrow a+b-2c=x^2+y^2\)
\(\Leftrightarrow a+b=x^2+2c+y^2\)
\(\Leftrightarrow a+b=x^2+2xy+y^2\)
\(\Leftrightarrow a+b=\left(x+y\right)^2\)là số chính phương
Do đó : \(abc=c^2.\left(x+y\right)^2=\left(cx+cy\right)^2\)là số chính phương
Vậy .................
1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9
2.
Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1
=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2
=> 2y^2 + 1 chia 4 dư 4
mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương