Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CM // OA, với M thuộc OB
Ta có góc OCM = góc AOC (so le trong) ; góc AOC = góc COM = 600 ( OC là phân giác) => góc OCM = góc COM = 600
Vậy tam giác OCM đều => OC = CM = MO
Ta lại có MC/OA = MB/OB => MC/OA = (OB - OM)/OB => MC/OA = 1 - OM/OB => MC/OA + OM/OB =1
=> OC/OA + OC/OB = 1 hay 1/OA + 1/OB = 1/OC (đpcm)
cho tam giác nhọn abc o thuộc tam giác có OA,OB,OC cắt BC, CA, AB tại D,E,F. CMR AO/AD+OB/BE+OC/CF=2
a) Xét ΔOAB và ΔOCD có
\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\left(=\dfrac{3}{2}\right)\)
\(\widehat{AOB}\) chung
Do đó: ΔOAB\(\sim\)ΔOCD(c-g-c)
DE//AB
=>OD/OA=OE/OB=DE/AB=1/3
EF//BC
=>EF/BC=OF/OC=OE/OB=1/3=OD/OA
OF/OC=OD/OA
=>DF//AC
=>DF/AC=OD/OA=1/3
Xet ΔDEF và ΔABC có
DE/AB=EF/BC=DF/AC
=>ΔDEF đồng dạng với ΔABC
=>k=ED/AB=1/3