Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Chứng minh được: mọi số dạng 3k±2,5k±2 đều ko fai số chính phương
- Nếu b chẵn thì abc chia hết 2
Nếu b lẻ thì b2=8k+1 (k thuộc Z)=>b2±4ac là SCP lẻ.đặt b2±4ac=8m+1 (m thuộc Z)
=>4ac chia hết 8 =>ac chia hết 2 =>abc chia hết 2 (1)
- Nếu b chia hết 3 =>abc chia hết 3
Nếu b ko chia hết 3 thì b2 chia 3 dư 1.khi đó ac ko chia hết 3 thì b2±4ac có dạng 3p±2 ko là SCP =>ac chia hết 3 =>abc chia hết 3 (2)
- Nếu b chia hết 5 thì abc chia hết 5
Nếu b ko chia hết 5 thì b2 chia 5 dư 1.khi đó ac ko chia hết 5 thì b2±4c có dạng 5q±2 ko là SCP =>ac chia hết 5 =>abc chia hết 5 (3)
Từ (1) (2) (3) và vì (2,3,5)=1 nên abc chia hết 30
y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1
=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2
=> 2y^2 + 1 chia 4 dư 4
mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
https://diendantoanhoc.net/topic/104068-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-b2-4ac-kh%C3%B4ng-ph%E1%BA%A3i-s%E1%BB%91-ch%C3%ADnh-ph%C6%B0%C6%A1ng/
Xem ở link này (mình gửi cho)
Học tốt!!!!!!!!