K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

Ta có : 

(n,6) = 1 => n phải là số lẻ ( nếu n chẵn thì ( n,6) = 2 )

=> n - 1 và n + 1 là 2 số chẵn liên tiếp 

=> ( n - 1 )(n + 1 ) chia hết cho 8 

(n,6) = 1 => n không chia hết cho 3

=> n sẽ có dạng là 3k +1 ; 3k + 2 ( k thuộc Z )

Với n = 3k +1 => n -1 = 3k + 1 -1 = 3k chia hết cho 3  => (n - 1)(n+1) chia hết cho 3 

Với n = 3k + 2 => n + 1 = 3k + 2 +1 = 3k+ 3 chia hết cho 3 => ( n -1 )(n +1) chia hết cho 3 

Với cả 2TH => ( n-1)(n+1) chia hết cho 3 

Mà (8,3)= 1 => (n-1)(n+1) chia hết cho 24 ( đpcm)

11 tháng 3 2020

ta có \(\left(n-1\right).n.\left(n+1\right)⋮3\) mà UCLN (3,n) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮3\) (1)

n là số nguyên tố lớn hơn 3 nên n là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp

Trong số hai số chẵn liên tiếp , có một số là bội của 4 nên tích chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra \(\left(n-1\right).\left(n+1\right)⋮3và8\)

Mà UCLN (3,8) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮24\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

30 tháng 1 2017

Nguyễn Huy TúAkai Haruma

17 tháng 2 2017

\(A=\left(n-1\right)\left(n+1\right)\left(n^2\right)\left(n^2+1\right)\)

\(A=\left(n-1\right)n\left(n+1\right).n\left(n^2+1\right)\left(I\right)\)

\(A=\left[\left(n-1\right)\left(n+1\right).n^2\right]\left(n^2-4+5\right)\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n^2-2^2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-1\right)\left(n+1\right).n^2\left(n-2\right)\left(n+2\right)+5\left(n-1\right)\left(n+1\right).n^2\)

\(=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right).n^2+5\left(n-1\right)\left(n+1\right).n^2\left(II\right)\)

1)với (I) A là tích của 3 số tự nhiên liên tiếp => chia hết cho 2 &3

2) với bửu thức (II) A là tổng hai số hạng

số hạng đầu là tích của 5 số tự nhiên liên tiếp=> chia hết cho 5

số hạng sau hiển nhiên chia hết cho 5 do có thừa số 5

KL

Với (I) A chia hết cho 2&3

Với (II) A chia hết cho 5

(I)&(II)=> điều bạn muốn tìm

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
9 tháng 11 2017

         Giải : 

Theo bài ra ta có : 

P= n(n+1)(2n+1)

P= n(n+1)(n+2+n-1)

P= n(n+1)(n+2)+(n-1)(n+1)n 
Ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 \(\Rightarrow\) P chia hết cho 6 ( ĐPCM )

9 tháng 11 2017

Ta có:

\(P=n\left(n+1\right)\left(2n+1\right)\)

\(P=n\left(n+1\right)\left(n+2+n-1\right)\)

\(P=n\left(n+1\right)\left(n+2\right)+\left(n-1\right)\left(n+1\right).n\)

Từ đó, ta nói 3 số tự nhiên liên tiếp là 1 số chia hết cho 2

Chia hết cho 3 => P chia hết cho 6 (ĐPCM)

<3