Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b + c = 2a
⇔ \(\dfrac{b+c}{2R}=\dfrac{2a}{2R}\) (1) với R là bán kính đường tròn ngoại tiếp
Theo định lí sin \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
nên (1) ⇔ sinB + sinC = 2sinA
Chọn B
Lời giải:
Áp dụng 1 số công thức lượng giác:
\(\sin A=\frac{\sin B+\sin C}{\cos B+\cos C}=\frac{2\sin (\frac{B+C}{2})\cos (\frac{B-C}{2})}{2\cos (\frac{B+C}{2})\cos (\frac{B-C}{2})}=\frac{\sin \frac{B+C}{2}}{\cos \frac{B+C}{2}}\)
\(=\tan \frac{B+C}{2}=\tan (\frac{\pi-A}{2})=\cot \frac{A}{2}\)
\(\Leftrightarrow 2\sin \frac{A}{2}\cos \frac{A}{2}=\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}\) (trong tam giác, \(\widehat{A}\neq 0\rightarrow \sin \frac{A}{2}\neq 0)\)
\(\Leftrightarrow \cos \frac{A}{2}(2\sin^2 \frac{A}{2}-1)=0\)
\(\Rightarrow \left[\begin{matrix} \cos \frac{A}{2}=0\rightarrow \frac{\widehat{A}}{2}=\frac{\pi}{2}\rightarrow \widehat{A}=\pi (\text{vô lý})\\ \sin \frac{A}{2}=\frac{1}{\sqrt{2}}\rightarrow \frac{\widehat{A}}{2}=\frac{\pi}{4}\rightarrow \widehat{A}=\frac{1}{2}\pi=90^0 \end{matrix}\right.\)
Do đó tam giác ABC vuông tại A