Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{ab+ac}{4}=\dfrac{bc+ab}{6}=\dfrac{ca+cb}{8}=k\)
=>ab+ac=4k; bc+ab=6k; ac+bc=8k
=>ac-bc=-2k; ac+bc=8k; ab+ac=4k
=>ac=3k; bc=5k; ab=k
=>c/b=3; c/a=5
=>c=3b=5a
=>a/3=b/5=c/15
\(\frac{ab+ac}{2}\)=\(\frac{ba+bc}{3}\)=\(\frac{ca+cb}{4}\)=\(\frac{2\left(ab+ac+bc\right)}{9}\)(áp ụng tính chất dãy tỉ số bằng nhau)
*\(\frac{ab+ac}{2}\)=\(\frac{2\left(ab+ac+bc\right)}{9}\)=> 4,5(ab+ac)=2(ab+ac+bc) =>4,5ab+4,5ac=2ab+2ac+2bc=>2,5ab+2,5ac=2bc(rút gọn)
=>5(ab+ac)=4bc(1)=>1,25 (ab+ac)=bc
*\(\frac{ab+ac}{2}\)=\(\frac{ba+bc}{3}\)=\(\frac{ba+1,25ab+1,25ac}{3}\)=\(\frac{2,25ab+1,25ac}{3}\)
=>3(ab+ac)=2(2,25ba+1,25ac)=>3ab+3ac=4,5ba+2,5bc
=>0,5ac=1,5ba=>ac=3ab(2)
thay (2) vào (1) ta có 5(ab+3ab)=4bc=>5.4ab=4bc=> 5a=c (rút gọn) =>a/1=c/5(3)
Mà ac=3ab=>c=3b=>c/3=b/1 (4)
từ (3) và (4) suy ra: a/1=c/5 ;b/1=c/3=>\(\frac{a}{3}\) =\(\frac{b}{5}\) = \(\frac{c}{15}\) (đpcm)
sau có bài nào tương tự thì cứ hỏi mình nhá
Vì: \(0\le a\le b\le c\le1\) nên:
\(\left(a-1\right).\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\) (1)
\(\left(a-1\right).\left(c-1\right)\ge0\Leftrightarrow ac-a-c+1\ge0\Leftrightarrow ac+1\ge a+c\)
\(\Leftrightarrow\dfrac{1}{ac+1}\le\dfrac{1}{a+c}\Leftrightarrow\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\) (2)
\(\left(b-1\right).\left(c-1\right)\ge0\Leftrightarrow bc-b-c+1\ge0\Leftrightarrow bc+1\ge b+c\)
\(\Leftrightarrow\dfrac{1}{bc+1}\le\dfrac{1}{b+c}\Leftrightarrow\dfrac{a}{bc+1}\le\dfrac{a}{b+c}\) (3)
Cộng vế với vế của (1)(2) và (3) ta được:
\(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2a+2b+2c}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{2.\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ac+1}\le2\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{ab+ac+bc+ab-\left(ac+bc\right)}{2+3-4}=\frac{ab+ac+bc+ab-ac-bc}{1}\)
\(=\frac{2ab}{1}\) (1)
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{ab+ac+ca+cb-\left(bc+ba\right)}{2+4-3}=\frac{ab+ac+ca+cb-bc-ab}{3}\)
\(=\frac{2ac}{3}\) (2)
\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{bc+ba+ca+cb-\left(ab+ac\right)}{3+4-2}=\frac{bc+ba+ca+cb-ab-ac}{5}\)
\(=\frac{2bc}{5}\) (3)
Từ (1) ; (2) \(\Rightarrow\frac{2ab}{1}=\frac{2ac}{3}\)\(\Rightarrow\frac{b}{1}=\frac{c}{3}\)\(\Rightarrow\frac{b}{5}=\frac{c}{15}\)
Từ (2) ; (3) \(\Rightarrow\frac{2ac}{3}=\frac{2bc}{5}\)\(\Rightarrow\frac{a}{3}=\frac{b}{5}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\) (đpcm)
Theo t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)
\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)
\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)
\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)
\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)
\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)
Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)