K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

Theo cách làm của mình thì mình không biết có đúng hay không nhưng nhưng đây là cách làm của mình:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{2\left(a+b+c\right)}{a.b.c}=\frac{2.2015}{a.b.c}\)

Mà \(\frac{2.2015}{a.b.c}=\frac{1}{2015}\Rightarrow2.2015=\frac{a.b.c}{2015}\)

Vậy có ít một số bằng 2015

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

a+b+c=1 <=> a+b=1-c

+) Nếu 1-c=0 => a+b=0 <=> a=-b

=> A = a2015+b2015+c2015

A = (-b)2015+b2015+c2015

A = c2015 => A = 1 (Vì 1-c=0) (1)

Ta có: a3+b3+c3=1

a3+b3=1-c3

(a+b)(a2-ab+b20=(1-c)(1+c+c2)

=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)

=> a2-ab+b2=1+c+c2

(a+b)2-3ab=(1-c)2+3c

=> -3ab=3c <=> -ab=c

Thay -ab = c vào a+b+c=1, ta có:

a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0

=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1

+) Nếu a=1 => b+c=0 <=> b=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015-b2015

=> A=a2015 => A=1 (2)

+) Nếu b=1 => a+c=0 <=>a=-c

=> A=a2015+b2015+c2015

=> A=a2015+b2015+-a2015

=> A=b2015 => A=1 (3)

Từ (1)(2)(3) => A = 1

Vậy A = 1 với a+b+c=1 và a3+b3+c3=1

b) B = x2-3x+2016

B=x2-3x+2,25+2013,75

B=(x-1,5)2+2013,75

Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75

=> B ≥ 2013,75

=> GTNN của B bằng 2013,75

Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5

Vậy GTNN của B bằng 2013,75 tại x = 1,5

8 tháng 8 2017

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

Ta lại có: 

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi \(a=b=c\)

Thế vào N ta được

\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)

20 tháng 2 2017

1

25 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{\left(a+b+c\right)c}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b+c\right)c=-\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

Tự làm nốt