Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)
\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)
\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)
Từ \(a^2+b^2+c^2=1\) , ta có thể suy ra rằng \(\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\)
Ta Có \(a^2-a^3+b^2-b^3+c^2-c^3=0\)
<=> \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)
Nhận thấy \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Nên suy ra \(\hept{\begin{cases}a\left(1-a\right)=0\\b\left(1-b\right)=0\\c\left(1-c\right)=0\end{cases}}\) Vậy tồn tại trong ba số a,b,c có một số bằng 1
Kết hợp Với \(a^2+b^2+c^2=1\)
Suy ra hai số còn lại bằng 0
Vậy \(a+b^2+c^3=1\)
\(\Leftrightarrow\left(a^3+b^3+c^3\right)-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow\left(a^3-a^2\right)+\left(b^3-b^2\right)+\left(c^3-c^2\right)=0\)
\(\Leftrightarrow a.\left(a^2-1\right)+b.\left(b^2-1\right)+c.\left(c^2-1\right)=0\)
Vì \(a.\left(a^2-1\right)\ge0;b.\left(b^2-1\right)\ge0;c.\left(c^2-1\right)\ge0\)
\(\Rightarrow a.\left(a^2-1\right)=0;b.\left(b^2-1\right)=0;c.\left(c^2-1\right)=0\)
\(\hept{\begin{cases}a.\left(a^2-1\right)=0\\b.\left(b^2-1\right)=0\\c.\left(c^2-1\right)=0\end{cases}\Rightarrow\hept{\begin{cases}a=0;\pm1\\b=0;\pm1\\c=0;\pm1\end{cases}}}\)
rồi bn tings bốt hộ mk
mk mới lớp 6 lên cứ làm bừa
mk giải nhì toán leenbuafw thôi
\(\hept{\begin{cases}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{cases}}\)
=> \(0\le a^2;b^4;c^6;d^8\le1\)
=> \(-1\le a;b;c;d\le1\)
=> \(a^{2016}\le a^2\); \(b^{2017}\le b^4\); \(c^{2018}\le c^6\); \(d^8\le d^{2019}\)
=> \(a^{2016}+b^{2017}+c^{2018}+d^{2019}\le a^2+b^4+c^6+d^8\)
Do đó: \(a^{2016}+b^{2017}+c^{2018}+d^{2019}=a^2+b^4+c^6+d^8=1\)
<=> \(a^{2016}=a^2;b^{2017}=b^4;c^{2018}=c^6;d^{2019}=d^8;a^2+b^4+c^6+d^8=1\)
<=> \(\orbr{\begin{cases}a=0\\a=\pm1\end{cases}}\); \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\); \(\orbr{\begin{cases}c=0\\c=\pm1\end{cases}}\); \(\orbr{\begin{cases}d=0\\d=1\end{cases}}\); \(a^2+b^4+c^6+d^8=1\)
<=> \(a=b=c=0;d=1\)hoặc \(a=b=d;c=\pm1\) hoặc \(a=c=d=0;b=1\)hoặc \(b=c=d=0;a=\pm1\).
Tại sao \(0\le a^2;b^4;c^6;d^8\le1\) Lại suy ra \(-1\le a;b;c;d\le1\)????????????????????????