K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

n3 - n =n(n2-1)=(n-1)n(n+1)

mà (n-1)n(n+1) là 3 số nguyên liên tiếp nên (n-1)n(n+1) sẽ có ít nhất 1 số chia hết cho 2 và có ít nhất 1 số chia hết cho 3

ta lại có ƯCLN(2;3)=1

=> (n-1)n(n+1) chia hết cho 2*3=6

=> điều phải chứng minh

7 tháng 1 2018

a) Gợi ý: phân tích 50 n + 2   -   50 n + 1 = 245.10. 50 n .

b) Gợi ý: phân tích n 3  - n = n(n - 1)(n +1).

6 tháng 12 2019

A = n3 – n (có nhân tử chung n)

= n(n2 – 1) (Xuất hiện HĐT (3))

= n(n – 1)(n + 1)

n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên

+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2

+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3

Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.

31 tháng 10 2021

\(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì \(n-1,n,n+1\) là 3 số nguyên liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 3

Mà (2,3)=1\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

7 tháng 2 2018

Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.

26 tháng 2 2023

mình cần giúp gấp

8 tháng 8 2015

n3-n=n(n2-1)=n(n+1)(n-1)

Do n là số nguyên =>n-1 ; n ; n+1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3

Mà ƯCLN(2;3)=1

=>n(n-1)(n+1) chia hết cho 2.3 hay chia hết cho 6 với mọi n nguyên
 

8 tháng 8 2015

Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)

Vì (n-1) và n là 2 số tự nhiên liên tiếp=>(n-1).n chia hết cho 2=>(n-1).n.(n+1) chia hết cho 2(1)

Vì (n-1),n và n+1là 3 số tự nhiên liên tiếp=>(n-1).n.(n+1) chia hết cho 3(2)

Từ (1) và (2) ta thấy:

(n-1).n.(n+1) chia hết cho 2,3.

mà (2,3)=1

=>(n-1).n.(n+1) chia hết cho 6

=>n3-n chia hết cho 6

=>ĐPCM

vào câu hỏi tương tự

tick nha

24 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Vì n;n-1;n+1 là ba số nguyên liên tiếp

nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)

hay \(n\left(n-1\right)\left(n+1\right)⋮6\)