K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Giả sử tồn tại một tam giác có độ dài các đường cao là : h 1 = 1; h 2  = √3; h 3  = 1 + √3 (cùng đơn vị đo )

Gọi a 1 ; a 2 ; a 3  lần lượt là độ dài ba cạnh tương ứng với các đường cao  h 1 ;  h 2  ; h 3  .

Ta có: 

a 1 ; a 2 ; a 3  lần lượt là 3 cạnh của tam giác nên:

Vậy không tồn tại một tam giác có độ dài 3 đường cao lần lượt là 1; 3 1 +  3  (cùng đơn vị đo)

NV
22 tháng 10 2021

AB=AC \(\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow AH\) đồng thời là phân giác và trung tuyến

\(\Rightarrow\left\{{}\begin{matrix}\widehat{BAH}=\dfrac{1}{2}\widehat{A}=60^0\\BH=\dfrac{1}{2}BC=6\end{matrix}\right.\)

Trong tam giác vuông ABH:

\(tan\widehat{BAH}=\dfrac{BH}{AH}\Rightarrow AH=\dfrac{BH}{tan\widehat{BAH}}=\dfrac{6}{tan60^0}=2\sqrt{3}\)

22 tháng 10 2021

D

Xét \(\Delta\)ABC có : 

AH2 = BH.CH 

AH2 = c'.b' (1)

Mà c'/b' = 1/3 

=》3c' = b 

Thay vào (1) ta có : 

12 = c'.3c' 

12 = 3c'2 

c'2 = 4 

=》 c' = 2 (cm)

=》b' = 3.2 = 6(cm)

=》 BC = 2 + 6 = 8 (cm)

Ta có : AB2 = BH.BC = 2.8 = 16 

=》 AB = 4(cm)

Lại có AC2 = CH.BC = 6.8 = 48(cm)

=》 AC = 4\(\sqrt{ }\)3 (cm)

NV
23 tháng 8 2021

\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)

\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)

Tương tự và cộng lại:

\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)

3 tháng 9 2021

mỗi lần đăng chỉ đc hỏi 1 bài thôi