K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

Gọi \(N\left(x_0;y_0\right)\)là điểm cố định mà (d) luôn đi qua.

Ta có : \(2x_0+\left(m-1\right)y_0=1\Leftrightarrow\left(2x_0-y_0-1\right)+my_0=0\)

Vì (d) luôn đi qua một điểm cố định với mọi m nên ta có : 

\(\begin{cases}2x_0-y_0-1=0\\my_0=0\end{cases}\)\(\Leftrightarrow\begin{cases}x_0=\frac{1}{2}\\y_0=0\end{cases}\)

Vậy (d) luôn đi qua điểm \(N\left(\frac{1}{2};0\right)\)

13 tháng 6 2016

Gọi điểm có định là \(N\left(x_0;y_0\right)\)

Vì (d) luôn đi qua điểm cố định N nên ta có : 

\(\Rightarrow2x_0-1+y_0m-y_0=0\Leftrightarrow\left(2x_0-y_0-1\right)+y_0.m=0\)

Vì đẳng thức trên luôn đúng với mọi m nên :

\(\hept{\begin{cases}\left(2x_0-y_0-1\right)=0\\y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=\frac{1}{2}\\y_0=0\end{cases}}\)

Vậy (d) luôn đi qua điểm cố định \(N\left(\frac{1}{2};0\right)\)

13 tháng 6 2016

Ta thấy x=1/2 và y=0 luôn thỏa mãn phương trình (d) với mọi m nên (d) luôn đi qua điểm A(1/2;0) với mọi giá trị của m.

NV
14 tháng 9 2021

Chắc hàm là \(y=\left(m+1\right)x+m-1\)

Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0+m-1\)

\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)

Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)

21 tháng 9 2021

cho (d) ; y=(m-1)x+m-3 gọi A ,B là giao điểm của (d) và ox,oy . tìm m để tam giác OAB cân                              giúp e vs 

 

19 tháng 11 2019

Điều kiện cần và đủ để hàm số đi qua điểm cố định \(M\left(x_0;y_0\right)\) là: 

\(y_0=mx_0+m+6\left(\forall m\right)\)

\(\Leftrightarrow m\left(x_0+1\right)+y_0-6=0\left(\forall m\right)\)

\(\Leftrightarrow\hept{\begin{cases}x_0+1=0\\y_0-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=6\end{cases}}}\)

Vậy hàm số y = mx + m - 6 luôn đi qua điểm cố định \(M\left(-1;6\right)\) với mọi m