K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Ta có $f(1) = (1^2+1+1)^{2018} + (1^2-1+1)^{2018} - 2= 3^{2018} - 2 \ne 0$ nên theo định lý Bezout thì $f(x)$ không chia hết cho $(x-1)$, dẫn đến $f(x)$ không chia hết cho $(x^2-x)$

30 tháng 3 2017

Mk đang cần CM f(x) chia hết cho g(x) mà!!!bucminh

28 tháng 2 2018

Mk gợi ý nha

Bạn để ý x2-x=x(x-1) nên ta xét x=0 và x=1

Với x=0 ta được f(0)=0=>f(x) chia hết cho x

Với x=1 ta được f(1)=0=>f(x) chia hết cho x-1

Mà (x, x-1)=1=> f(x) chia hết x(x-1)

                     <=> f(x) chia hết cho x2-x

                      hay f(x) chia hết cho g(x)

Vậy... 

k và kb vs mk nha. 

10 tháng 4 2020

hello

31 tháng 7 2020

Ta có: \(g\left(x\right)=x^2-x\)có nghiệm x=0 và x=1 (vì \(x^2-x=x\left(x-1\right)\))

Để chứng minh \(f\left(x\right)⋮g\left(x\right)\), ta sẽ chứng minh \(f\left(x\right)\)cũng có nghiệm x=0 và x=1.

Thay x=0 vào \(f\left(x\right)\):\(f\left(0\right)\)\(=\left(-1\right)^{2018}+1^{2018}-2=0\)

Thay x=1 vào \(f\left(x\right)\)\(f\left(1\right)=1^{2018}+1^{2018}-2=0\)

\(\Rightarrow\)x=0 và x=1 là hai nghiệm của \(f\left(x\right)\)

\(\Rightarrowđpcm\)

31 tháng 7 2020

\(g\left(x\right)=x^2-x\)

g(x) có nghiệm\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)

Để chứng minh \(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)chia hết cho \(g\left(x\right)=x^2-x\)thì ta chứng minh tất cả nghiệm của đa thức g(x) cũng là nghiệm của f(x) hay 1 và 0 là nghiệm của f(x) (1)

Thật vậy:\(f\left(x\right)=\left(x^2+x-1\right)^{2018}+\left(x^2-x+1\right)^{2018}-2\)

+) Thay x = 0 vào f(x), ta được: \(f\left(0\right)=\left(0^2+0-1\right)^{2018}+\left(0^2-0+1\right)^{2018}-2=1+1-2=0\)

+) Thay x = 1 vào f(x), ta được: \(f\left(1\right)=\left(1^2+1-1\right)^{2018}+\left(1^2-1+1\right)^{2018}-2=1+1-2=0\)

Qua hai kết quả trên ta suy ra f(x) có 2 nghiệm là 0 và 1 (2)

Từ (1) và (2) suy ra \(f\left(x\right)⋮g\left(x\right)\)(đpcm)

23 tháng 7 2020

giỏi Toán dzay :v

23 tháng 7 2020

Má giỏi hơn tui :v