Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét vế trái : \(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{221}\)
ta có : \(T< \frac{1}{5}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{220}\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=\frac{1}{5}+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)< \frac{1}{5}+\frac{1}{4}\Rightarrow T< \frac{9}{20}\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)=\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)=\)
= 1/11 + 1/12 +1/13+...+1/20 (đpcm)
a, Câu hỏi của Nguyễn Ánh Ngân - Toán lớp 6 - Học toán với OnlineMath
b, Câu hỏi của Vũ Xuân Hiếu - Toán lớp 6 | Học trực tuyến
c)
\(a)\frac{8}{9}x-\frac{2}{3}=\frac{1}{3}x+1\frac{1}{3}\)
\(\Rightarrow\frac{8}{9}x-\frac{1}{3}x=\frac{2}{3}+1\frac{1}{3}\)
\(\Rightarrow\frac{5}{9}x=\frac{2}{3}+\frac{4}{3}\)
\(\Rightarrow\frac{5}{9}x=2\Rightarrow x=2\div\frac{5}{9}=\frac{18}{5}\)
\(b)(\frac{-2}{5}+\frac{3}{7})-(\frac{4}{9}+\frac{12}{20}-\frac{13}{25})+\frac{7}{35}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{3}{5}-\frac{13}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{15}{25}-\frac{13}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-(\frac{4}{9}+\frac{2}{25})+\frac{1}{5}\)
\(=\frac{1}{35}-\frac{118}{25}+\frac{1}{5}\)
Làm nốt