K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

Đặt A la tên của biểu thức trên

\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}\)

\(=\frac{1}{2\left(3+1\right):2}+\frac{1}{3\left(5+1\right):2}+\frac{1}{4\left(7+1\right):2}+...+\frac{1}{1009\left(2017+1\right):2}\)

\(=\frac{2}{2.4}+\frac{2}{3.6}+\frac{2}{4.8}+....+\frac{2}{1009.2018}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1009.1009}\)

\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\right)\)

Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

...........

\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{1008.1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\right)\)

\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{1009}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)

Vậy ...

7 tháng 5 2017

Đặt tổng đã cho là A

\(\frac{1}{1+3}=\frac{1}{\left(3+1\right)x2:2}=\frac{1}{2x4:2}=\frac{1}{2x4}x2=\frac{2}{2x4}\)=\(\frac{1}{2x2}\)

\(\frac{1}{1+3+5}=\frac{1}{\left(1+5\right)x3:2}=\frac{1}{3x6}x2=\frac{2}{3x6}\)=\(\frac{1}{3x3}\)

\(\frac{1}{1+3+5+....+2017}=\frac{1}{\left(1+2017\right)x1009:2}=\frac{1}{1009x2018}x2=\frac{2}{1009x2018}\)=\(\frac{1}{1009x1009}\)

Các mẫu là bạn áp dụng tính tổng đó nha ( mk làm tắt)

A=\(\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{1009x1009}\)<\(\frac{1}{2x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{1008x1009}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)=\(\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)

vậy A<3/4( Mk có làm tắt nên chỗ nào ko hiểu thì nhắn tin nha

5 tháng 5 2017

\(S=\frac{1}{1+3}+\frac{1}{1+3+5}+...+\frac{1}{1+3+5+7+...+2017}\)

\(S=\frac{1}{\left[\left(1+3\right):2\right]^2}+\frac{1}{\left[\left(1+5\right):2\right]^2}+...+\frac{1}{\left[\left(2017+1\right):2\right]^2}\)

\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\)

\(S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\)

\(S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1008}-\frac{1}{1009}\)

\(S< \)

Còn đâu làm nốt , tao đi ngủ đây

a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)

\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)

\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)

\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)

\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)

\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)

b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)

\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)

\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)

\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)

\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)

21 tháng 4 2017

A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2017)

A=1/2^2+1/3^2+1/4^2+...+1/1009^2

2A=2/2^2+2/3^2+2/4^2+...+2/1009^2

Ta co :(x-1)(x+1)=(x-1)x+x-1=x^2-x+x-1=x^2-1<x^2

suy ra 2A<2/(1*3)+2/(3*5)+2/(5*7)+...+2/(1008*1010)

suy ra 2A <1-1/3+1/3-1/5+1/5-1/7+...+1/1008-1/1010

suy ra 2A<1-1/1010

suy ra 2A<2009/2010<1<3/2

suy ra 2A <3/2

suy ra A <3/4 (dpcm)

nho k cho minh voi nha

3 tháng 3 2019

có cách nào dễ hiểu hơn không ạ?

3 tháng 5 2019

\(\frac{ }{ }\)

3 tháng 5 2019

\(1)\frac{1}{2}x-\frac{3}{5}=\frac{-4}{5}\)

\(\Rightarrow\frac{1}{2}x=\frac{-4}{5}+\frac{3}{5}\)

\(\Rightarrow\frac{1}{2}x=\frac{-1}{5}\)

\(\Rightarrow x=\frac{-1}{5}:\frac{1}{2}=\frac{-1}{5}\cdot\frac{2}{1}=\frac{-2}{5}\)

\(\Leftrightarrow x=\frac{-2}{5}\)

\(2)3\frac{1}{5}-2\frac{1}{3}x=-1\frac{3}{5}+1\frac{7}{10}\)

\(\Rightarrow\frac{16}{5}-\frac{7}{3}x=-\frac{8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{16}{5}-\frac{-8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{16}{5}+\frac{8}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{24}{5}+\frac{17}{10}\)

\(\Rightarrow\frac{7}{3}x=\frac{48}{10}+\frac{17}{10}\)

Đến đây tìm được rồi nhé

3,4, áp dụng bài 1,2 rồi làm :v