Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A la tên của biểu thức trên
\(A=\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+...+2017}\)
\(=\frac{1}{2\left(3+1\right):2}+\frac{1}{3\left(5+1\right):2}+\frac{1}{4\left(7+1\right):2}+...+\frac{1}{1009\left(2017+1\right):2}\)
\(=\frac{2}{2.4}+\frac{2}{3.6}+\frac{2}{4.8}+....+\frac{2}{1009.2018}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{1009.1009}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1009^2}\right)\)
Ta có: \(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...........
\(\frac{1}{1009^2}< \frac{1}{1008.1009}\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{1008.1009}\right)\)
\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\right)\)
\(A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{1009}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}=\frac{3}{4}-\frac{1}{1009}< \frac{3}{4}\)
Vậy ...
Đặt tổng đã cho là A
\(\frac{1}{1+3}=\frac{1}{\left(3+1\right)x2:2}=\frac{1}{2x4:2}=\frac{1}{2x4}x2=\frac{2}{2x4}\)=\(\frac{1}{2x2}\)
\(\frac{1}{1+3+5}=\frac{1}{\left(1+5\right)x3:2}=\frac{1}{3x6}x2=\frac{2}{3x6}\)=\(\frac{1}{3x3}\)
\(\frac{1}{1+3+5+....+2017}=\frac{1}{\left(1+2017\right)x1009:2}=\frac{1}{1009x2018}x2=\frac{2}{1009x2018}\)=\(\frac{1}{1009x1009}\)
Các mẫu là bạn áp dụng tính tổng đó nha ( mk làm tắt)
A=\(\frac{1}{2x2}+\frac{1}{3x3}+...+\frac{1}{1009x1009}\)<\(\frac{1}{2x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{1008x1009}=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1008}-\frac{1}{1009}\)=\(\frac{1}{4}+\frac{1}{2}-\frac{1}{1009}< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}\)
vậy A<3/4( Mk có làm tắt nên chỗ nào ko hiểu thì nhắn tin nha
\(1)\frac{1}{2}x-\frac{3}{5}=\frac{-4}{5}\)
\(\Rightarrow\frac{1}{2}x=\frac{-4}{5}+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}x=\frac{-1}{5}\)
\(\Rightarrow x=\frac{-1}{5}:\frac{1}{2}=\frac{-1}{5}\cdot\frac{2}{1}=\frac{-2}{5}\)
\(\Leftrightarrow x=\frac{-2}{5}\)
\(2)3\frac{1}{5}-2\frac{1}{3}x=-1\frac{3}{5}+1\frac{7}{10}\)
\(\Rightarrow\frac{16}{5}-\frac{7}{3}x=-\frac{8}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{16}{5}-\frac{-8}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{16}{5}+\frac{8}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{24}{5}+\frac{17}{10}\)
\(\Rightarrow\frac{7}{3}x=\frac{48}{10}+\frac{17}{10}\)
Đến đây tìm được rồi nhé
3,4, áp dụng bài 1,2 rồi làm :v
a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)
\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)
\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)
b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)
\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)
\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)
\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)
\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)