K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2015

Gọi ƯCLN(2n+1; 6n+5) là d. Ta có:

2n+1 chia hết cho d => 6n+3 chia hết cho d

6n+5 chia hết cho d

=> 6n+5-(6n+3) chia hết cho d

=> 2 chia hết cho d

Mà 2n+1 chia 2 dư 1

=> d = 1

=> \(\frac{2n+1}{6n+5}\)tối giản (Đpcm)

22 tháng 2 2016

Gọi ước chung lớn nhất (4n+1;6n+1)=d

->4n+1 chia hết cho d; 6n+1 chia hết cho d

Vì 4n+1 chia hết cho d

->3(4n+1) chia hết cho d

->12n+3 chia hết cho d

Vì 6n+1 chia hết cho d

->2(6n+1) chia hết cho d

->12n+2 chia hết cho d

Xét hiệu:12n+3-(12n+2) chia hết cho d

             12n+3-12n-2 chia hết cho d

                       1 chia hết cho d

->d thuộc Ư(1)

Ư(1)={1;-1}

-> ước chung lớn nhất(4n+1;6n+1)={1;-1}

Vậy với mọi n thuộc N, phân số 4n+1/6n+1 là phân số tối giản.

(VÌ PHẤN SỐ TỐI GIẢN LUÔN CÓ ƯỚC CHUNG LỚN NHẤT LÀ 1 VÀ -1 BẠN Ạ)

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.