Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: ababab=ab0000+ab00+ab
=ab.10000+ab.100+ab.1
=ab.(10000+100+1)
=ab.10101
mà 10101 chia hết cho 3 nên ab.10101 chia hết cho 3
vậy...
Ta co : ababab=ab0000+ab00+ab
=ab.10000+ab.100+ab.1
=ab.(10000+100+1)
=ab.10101
Co :10101 chia het cho 3
Nen ab.10101 chia het cho 3
Vay suy ra ababab la boi cua 3
**** nhe
\(a.ababab=ab.10101⋮3\)
\(b.36a⋮9;27b⋮9\Rightarrow36a+27b⋮9\)
\(a.42k+14\)
\(42k⋮7;14⋮7\Rightarrow42k+14⋮7\)
\(\Rightarrow\text{Số chia 42 dư 14 thì chia hết cho 7}\)
ababab=1000ab+100ab+ab
=ab*(1000+100+1)
=ab*10101
vì 10101 chia hết cho a nên ab*10101 chia hết cho 3
nên ababab cũng chia hết cho 3
ababab=10000ab+100ab+ab
=abx(10000+1000+1)
=abx11001
Vì 11001 chia hết cho nên abx11001 chia hết cho 3
ababab=ab.10101=ab.3.3367 chia hết cho 3
Vậy ababab chia hết cho 3
ababab = ab . 10 101
mà 10 101 chia hết cho 3 nên ababab chia hết cho 3 (đpcm)
1. vì 53! và 51! đều chứa thừa số 29 nên 53! và 51! đều chia hết cho 29 => 53! - 51! : hết cho 29
2. a. aaabbb = 111000a + 111b
vì 111000a và 111b đều chia hết cho 37 nên 111000a + 111b : hết cho 37 => aaabbb : hết cho 37
b. ababab = 10101 . ab mà 10101 : hết cho 7 => ababab : hết cho 7
a, aaabbb = 111000a + 111b đều chia hết cho 37 nên 111000a + 111b chia hết cho 37 . Suy ra aaabbb chia hết cho 37
ta có
a+b+a+b+a+b=\(3a+3b=3\left(a+b\right)⋮3\)
Ta co : ababab = a + b + a + b + a + b
= ( a + a + a ) + ( b + b + b )
= 3a + 3b
= 3 ( a + b )
Vi 3 chia het cho 3 => 3(a + b ) chia het cho 3
=> ababab chia het cho 3