Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co : ababab=ab0000+ab00+ab
=ab.10000+ab.100+ab.1
=ab.(10000+100+1)
=ab.10101
Co :10101 chia het cho 3
Nen ab.10101 chia het cho 3
Vay suy ra ababab la boi cua 3
**** nhe
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Cho $n=1$ thì $(n+2)(n+9)=30$ không chia hết cho 49 cũng không chia hết cho 7. Bạn xem lại đề.
\(a.ababab=ab.10101⋮3\)
\(b.36a⋮9;27b⋮9\Rightarrow36a+27b⋮9\)
\(a.42k+14\)
\(42k⋮7;14⋮7\Rightarrow42k+14⋮7\)
\(\Rightarrow\text{Số chia 42 dư 14 thì chia hết cho 7}\)
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
Ta có : abc chia hết cho 21
=> 100a+10b+c chia hết cho 21
=> 84a+16a+10b + c chia hết cho 21
=> 16a+10b+c chia hết cho 21
=> 64a+40b+4c chia hết cho 21
=> 63a+a+42b-2b+4c chia hết cho 21
=> a-2b+4c chia hết cho 21
HT
Ta có:
abc \(=\) \(100a+10b+c\)
\(=\)\(100a-8b+10b-42b+c+63c+84a+42b-63c\)
\(=\)\(16a-32b+64c+84a+42b-63c\)
\(=\)\(16\left(a-2b+4c\right)+84a+42b-63c\)
Áp dụng tính chất chia hết của tổng, ta có:
\(\hept{\begin{cases}abc⋮21\\84a+42b-63c⋮21\end{cases}\Leftrightarrow\left(a-2b+4c\right)⋮21}\)
Kết quả là 111111