Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 29 - 1 = 511 không chia hết cho 3.
b, \(5^6-10^4=5^6-5^4.2^4\)
\(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)
c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)
d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)
Chúc bạn học tốt
Nhận xét: với mọi a thuộc Z
\(a\left(a^2-1\right)=\left(a-1\right).a.\left(a+1\right)\)chia hết cho 3 và chia hết cho 2
mà (3, 2)=1
=> \(a\left(a^2-1\right)\)chia hết cho 6 (1)
Với mọi m, n thuộc Z
\(m^3n-mn^3=mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
Từ (1) => \(m\left(m^2-1\right)⋮6,n\left(n^2-1\right)⋮6\)=> \(m^3n-mn^3⋮6\)với mọi m, n thuộc Z
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
Ngọc Anh
Ta có :
n (2n - 3 ) - 2n ( n + 1 )
= 2n2 - 3n - 22 - 2n
= -5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n (2n - 3) - 2n (n + 1 ) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
n(2n-3)-2n(n+1)
=2n2-3n-22-2n
=-5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Lời giải:
$A=a^5b-ab^5=ab(a^4-b^4)=ab(a^2-b^2)(a^2+b^2)$
Nếu $a,b$ khác tính chẵn lẻ thì hiển nhiên 1 trong 2 số là số chẵn,
$\Rightarrow ab\vdots 2\Rightarrow A\vdots 2$
Nếu $a,b$ cùng tính chẵn lẻ thì $a^2-b^2\vdots 2$
$\Rightarrow A\vdots 2$
Vậy tóm lại $A\vdots 2(1)$
Lại có:
Nếu ít nhất 1 trong 2 số $a,b$ chia hết cho 3 thì hiển nhiên $A\vdots 3$.
Nếu cả 2 số $a,b$ đều không chia hết cho 3. Ta biết 1 scp khi chia 3 dư 0 hoặc 1. Mà $a,b$ không chia hết cho 3 nên $a^2,b^2$ chia 3 dư 1.
$\Rightarrow a^2-b^2\equiv 1-1\equiv 0\pmod 3$
$\Rightarrow A\vdots 3$
Vậy $A\vdots 3(2)$
Xét tính chia hết cho 5
Nếu 1 trong 2 số $a,b$ chia hết cho 5 thì hiển nhiên $A\vdots 5$
Nếu cả 2 số đều không chia hết cho 5.
Ta biết 1 scp khi chia 5 dư 0,1,4. Vì $a,b$ không chia hết cho 5 nên $a^2,b^2$ chia 5 dư 1 hoặc 4.
TH $a^2,b^2$ cùng dư 1 hoặc cùng dư 4 khi chia 5 thì $a^2-b^2\vdots 5\Rightarrow A\vdots 5$
TH $a^2,b^2$ khác dư, tức là 1 số chia 5 dư 1 còn 1 số chia 5 dư 4
$\Rightarrow a^2+b^2\equiv 1+4\equiv 5\equiv 0\pmod 5$
$\Rightarrow A\vdots 5$
Vậy tóm lại $A\vdots 5(3)$
Từ $(1); (2); (3)$ mà $2,3,5$ đôi một nguyên tố cùng nhau nên $A\vdots (2.3.5)$ hay $A\vdots 30$