Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
a, 29 - 1 = 511 không chia hết cho 3.
b, \(5^6-10^4=5^6-5^4.2^4\)
\(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)
c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)
d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)
Chúc bạn học tốt
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
TH1: n chia hết cho 3
=> n2 + n chia hết cho 3
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 2
TH2: n chia 2 dư 1
=> n2 chia 3 dư 1
=> n2 + n chia 3 dư 2
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 1
TH3: n chia 3 dư 2
=> n2 chia 3 dư 1
=> n2 + n chia hết cho 3
Mà 2 chia 3 dư 2
=> n2 + n + 2 chia 3 dư 2
KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)
Đặt \(A=n^6+n^4-2n^2=n^2(n^4-n^2-2)\)
\(=n^2(n^4-1+n^2-1)\)
\(=n^2\left[(n^2-1)(n^2+1)+n^2-1\right]\)
\(=n^2(n^2-1)(n^2+2)\)
\(=n\cdot n(n-1)(n+1)(n^2+2)\)
+ Nếu n chẵn ta có n = 2k \((k\in N)\)
\(A=4k^2(2k-1)(2k+1)(4k^2+2)=8k^2(2k-1)(2k+1)(2k^2+1)\)
\(\Rightarrow A⋮8\)
+ Nếu n lẻ ta có n = 2k + 1 \((k\in N)\)
\(A=(2k+1)^2\cdot2k(2k+2)(4k^2+4k+1+2)\)
\(=4k(k+1)(2k+1)^2(4k^2+4k+3)\)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
\(\Rightarrow A⋮8\)
Do đó A chia hết cho 8 với mọi \(n\in N\)
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra \(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n \(\in N\)
Chúc bạn học tốt :>
Ta có A= 5n^3+15n^2+10n=5n^3+5n^2 +10n62+10n
=5n^29 (n+1)+10n (n+1) =(n+1).(5n^2+10n)
5n (n+1).(n+2)
do n (n=1) (n+2)chia hết cho 6
suy ra Achia hết cho 30(n thuộc z)
có x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1
Nhận xét: với mọi a thuộc Z
\(a\left(a^2-1\right)=\left(a-1\right).a.\left(a+1\right)\)chia hết cho 3 và chia hết cho 2
mà (3, 2)=1
=> \(a\left(a^2-1\right)\)chia hết cho 6 (1)
Với mọi m, n thuộc Z
\(m^3n-mn^3=mn\left(m^2-n^2\right)=mn\left[\left(m^2-1\right)-\left(n^2-1\right)\right]=mn\left(m^2-1\right)-mn\left(n^2-1\right)\)
Từ (1) => \(m\left(m^2-1\right)⋮6,n\left(n^2-1\right)⋮6\)=> \(m^3n-mn^3⋮6\)với mọi m, n thuộc Z