Ta đặt biểu thức trên là S Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41
P có 996 số hạng
Nhóm P thành từng bộ 3 số hạng P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990 = (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4) = (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986) = 91 x (1 + 3^6 + .... + 3^1986) Do 91 chia hết cho 13 nên P cũng chia hết cho 13
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có: P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984) = 820 x (1 + 3^8 + 3^16 + ... + 3^1984) Do 820 chia hết cho 41 nên P cũng chia hết cho 41
*a^(n.m)=(a^n)^m. Ta có: S=3+3^3+...+3^1991= =3(1+3^2+3^4+...+3^1990) =3(1+9+9^2+...+9^995) =3(9^996-1)/8 =3P/8. với P=9^996-1. vì 13 và 8 là 2 số ngyuên tố cùng nhau, tương tự 41 và 8 là 2 số nguyên tố cùng nhau, nên ta chỉ cần cm P cha hết cho 13 và 41. a) ta có: P=9^996-1= =(3^2)^996-1 =3^1992-1 =(3^3)^664-1 =27^664-1 =(27-1)(1+27^2+...+27^663) =26(1+27^2+..+27^663) mà 26 chia hết cho 13, nên P chia hết cho 13. b)ta lại có: P=9^996-1= =(9^4)^249-1 =6561^249-1 =(6561-1)(1+...+6561^248) =6560(1+6561+...+6561^248) thấy 6560 chia hết cho 41 nên P chia hết cho 41. Với cách này ta còn cm được S chia hết cho rất nhiều số khác nữa.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
Tham khảo bài tương tự nhé !
Ta đặt biểu thức trên là S
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41
P có 996 số hạng
Nhóm P thành từng bộ 3 số hạng
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4)
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986)
= 91 x (1 + 3^6 + .... + 3^1986)
Do 91 chia hết cho 13 nên P cũng chia hết cho 13
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984)
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984)
Do 820 chia hết cho 41 nên P cũng chia hết cho 41
*(a^n-1)=(a-1)(1+a+a^2+..+a^(n-1))
=>1+a+a^2+...+a^(n-1)=(a^n-1)/(a-1)
*a^(n.m)=(a^n)^m.
Ta có:
S=3+3^3+...+3^1991=
=3(1+3^2+3^4+...+3^1990)
=3(1+9+9^2+...+9^995)
=3(9^996-1)/8
=3P/8.
với P=9^996-1.
vì 13 và 8 là 2 số ngyuên tố cùng nhau, tương tự 41 và 8 là 2 số nguyên tố cùng nhau, nên ta chỉ cần cm P cha hết cho 13 và 41.
a) ta có:
P=9^996-1=
=(3^2)^996-1
=3^1992-1
=(3^3)^664-1
=27^664-1
=(27-1)(1+27^2+...+27^663)
=26(1+27^2+..+27^663)
mà 26 chia hết cho 13, nên P chia hết cho 13.
b)ta lại có:
P=9^996-1=
=(9^4)^249-1
=6561^249-1
=(6561-1)(1+...+6561^248)
=6560(1+6561+...+6561^248)
thấy 6560 chia hết cho 41 nên P chia hết cho 41.
Với cách này ta còn cm được S chia hết cho rất nhiều số khác nữa.