K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

A = 3+32+33+....+39

A = (3+32+32)+(34+35+36)+(37+38+39)

A = 3(1+3+32)+34(1+3+32)+37(1+3+32)

A = 3.13 + 34.13 + 37.13

A = 13(3+34+37) chia hết cho 13(đpcm)

2 tháng 8 2015

A = 3+32+33+....+39

A= (3+32+33)+(34+35+36)+(37+38+39)

A = 3(1+3+32)+34(1+3+32)+37(1+3+32)

A = 3.13 + 34.13 + 37.13

A = 13.(3+34+37)

=> A chia hết cho 13 

Vậy ___________________

16 tháng 12 2023

A = 3+32+33+....+39

A= (3+32+33)+(34+35+36)+(37+38+39)

A = 3(1+3+32)+34(1+3+32)+37(1+3+32)

A = 3.13 + 34.13 + 37.13

A = 13.(3+34+37)

=> A chia hết cho 13 

Vậy A chia hết cho 13

21 tháng 9 2015

b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)

=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)

=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)

=3+3^2.13+3^5.13+.........+3^58.13

=3.13.(3^2+3^5+....+3^58)

vi tich tren co thua so 13 nen tich do chia het cho 13

=

21 tháng 9 2015

bai1

a) A=(31+32)+(33+34)+...+(359+360)

=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)

=3^1.(1+3)+...+3^59.(1+3)

=3^1.4+....+3^59.4

=4.(3^1+...+3^59)

vi tich tren co thua so 4 nen tich do chia het cho 4

11 tháng 10 2015

Ta có :

A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155

NV
21 tháng 11 2019

\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)

\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)

\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)

Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41

\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)

\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)

Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99

\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)

\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)

\(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)

\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)

Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)

21 tháng 11 2019

Giúp em nhanh lên với ạ

5 tháng 10 2015

                                                    Giải

Bài 1:

a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)

                =12+32x (3+32)+.......+358 x (3+32)=12+3x 12+..........+358 x 12

                =12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)

Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.

=> Tổng này chia hết cho 4.

Bài 2:

Ta có: 12a chia hết cho 12; 36b chia hết cho 12.

=> tổng này chia hết cho 12.

Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)

Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.

=> Tổng này chia hết cho 5.