Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{a.\left(x+z\right)}{abc}=\dfrac{b.\left(z+x\right)}{abc}=\dfrac{c.\left(x+y\right)}{abc}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{z+x-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c.\left(a-b\right)}\left(1\right)\)
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{y+z-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b.\left(c-a\right)}\left(2\right)\)
\(\dfrac{y+z}{bc}=\dfrac{x+z}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a.\left(b-c\right)}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra:
\(\dfrac{y-z}{a.\left(b-c\right)}=\dfrac{z-x}{b.\left(c-a\right)}=\dfrac{x-y}{c.\left(a-b\right)}\)
\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\Leftrightarrow\frac{y+z}{\frac{1}{a}}=\frac{z+x}{\frac{1}{b}}=\frac{x+y}{\frac{1}{c}}=\)
\(=\frac{y+z-\left(z+x\right)}{\frac{1}{a}-\frac{1}{b}}=\frac{z+x-\left(x+y\right)}{\frac{1}{b}-\frac{1}{c}}=\frac{x+y-\left(y+z\right)}{\frac{1}{c}-\frac{1}{a}}=\frac{y-x}{\frac{b-a}{ab}}=\frac{z-y}{\frac{c-b}{bc}}=\frac{x-z}{\frac{a-c}{ac}}\)
Chia các vế của 3 tỷ lệ thức cuối cho abc ta có:
\(\frac{y-x}{\frac{b-a}{ab}\cdot abc}=\frac{z-y}{\frac{c-b}{bc}\cdot abc}=\frac{x-z}{\frac{a-c}{ac}\cdot abc}=\frac{y-x}{c\left(b-a\right)}=\frac{z-y}{a\left(c-b\right)}=\frac{x-z}{b\left(a-c\right)}\)
Hay: \(\frac{x-y}{c\left(a-b\right)}=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}\)đpcm
a) vì x,y \(\in\)Z \(\Rightarrow\)x + y \(\in\)Z
\(\Rightarrow\)[ x + y ] = x + y ( 1 )
[ x ] = x ; [ y ] = y
\(\Rightarrow\)[ x ] + [ y ] = x + y ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)[ x + y ] = [ x ] + [ y ]
b) Ta có : y = [ y ] + { y } trong đó [ y ] \(\in\)Z ; 0 \(\le\){ y } < 1
\(\Rightarrow\)[ x + y ] = [ x + [ y ] + { y } ] ( 1 )
x \(\in\)Z ; [ y ] \(\in\)Z ; x + [ y ] \(\in\)Z
Từ ( 1 ) \(\Rightarrow\)[ x + y ] = [ x + [ y ] ] = x + [ y ]