Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{92}+\frac{1}{10^2}\)
Mà \(\frac{1}{3^2}>\frac{1}{3.4}\)
\(\frac{1}{4^2}>\frac{1}{4.5}\)
\(...\)
\(\frac{1}{9^2}>\frac{1}{9.10}\)
\(\frac{1}{10^2}>\frac{1}{10.11}\)
\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A-\frac{1}{2^2}>\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow A-\frac{1}{4}>\frac{8}{33}\)
\(\Rightarrow A>\frac{8}{33}+\frac{1}{4}\)
\(\Rightarrow A>\frac{65}{132}\left(dpcm\right)\)
mình cũng cần làm bài này!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\(HELPME\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}+\frac{1}{10.10}\)
\(A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.10}\)
\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
\(A>1+0+0+0+...+0-\frac{1}{10}\)
\(A>1-\frac{1}{10}=\frac{9}{10}\)
\(\Rightarrow A>\frac{5}{10}=\frac{1}{2}\)
mà : \(\frac{1}{2}=\frac{66}{132}>\frac{65}{132}\)
\(\Rightarrow A>\frac{65}{132}\)
Vậy \(A>\frac{65}{132}\)
Ta có: \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)
\(\Rightarrow A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
- Đến đây bn lấy \(\frac{9}{22}\) so sánh vs \(\frac{65}{132}\) là ra ĐPCM nhé :3
A=\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
A=\(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{9}+\frac{1}{10}-\frac{1}{10}\)
A= 0
=> A>\(\frac{65}{132}\)
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}+\frac{1}{10^2}\)
\(A>\frac{1}{2.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{2.2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2.2}+\frac{1}{3}-\frac{1}{11}\)
\(=\frac{65}{132}\)
\(\Rightarrow A>\frac{65}{132}\left(ĐPCM\right)\)
tất
nhiên
là lm
đc
nhìn đã biết đc quy ;uật r ko cần phải đọc lâu lm j
\(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{100}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}\)
\(=>A>\frac{65}{132}\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)
\(\Rightarrow A>\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)
\(A>1+0+0+0+...+0-\frac{1}{10}\)
\(A>1-\frac{1}{10}=\frac{9}{10}\)
\(\Rightarrow A>\frac{5}{10}=\frac{1}{2}\)
mà \(\frac{1}{2}=\frac{66}{132}>\frac{65}{132}\)
\(\Rightarrow A>\frac{65}{132}\)
Vậy \(A>\frac{65}{132}\)
Ta có : \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\)
\(A=\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A>\frac{1}{4}+\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow A>\frac{65}{132}\)
Vậy \(A>\frac{65}{132}\) \(\left(đpcm\right)\)