Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÂU HỎI TƯƠNG TỰ, BẠN KÉO XUỐNG BÀI THỨ 2 SẼ CÓ 1 CÂU HỎI Y HỆT CỦA BẠN
c/m số này có tận cùng là chứ số 5 => nó chia hết cho 5 vậy là hợp số
A=2001.2002.2003.2004+1
ta có:2001.2002.2003.2004 có tận cùng là 4
=>2001.2002.2003.2004=10k+4
=>A=10k+4+1=10k+5=5(2k+1) chia hết cho 5
=>A là hợp số
=>đpcm
=1/2000-1/2001+1/2001-1/2002+1/2002-1/2003+......+1/2009-1/2010
=1/2000-1/2010
=1/402000
\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)
\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2003}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{2000}-\frac{1}{2010}\)
\(=\frac{1}{402000}\)
\(\frac{1}{2000}\)+2001+\(\frac{1}{2001}\)+ 2002+\(\frac{1}{2002}\)+2003+...+\(\frac{1}{2009}\)+2010
2001,0005+2002,0005+2003,0005+...+2010,0005
Số số hạng là:
(2010,0005-2001,0005)+1=10( số)
Số cặp số hạng là:
10:2= 5 ( cặp)
Tổng từng cặp là: 2001,0005+2010,0005=2002,0005+2009,0005=...=4011,001
Tổng của các số hạng trên là :
4011,001x5=20055,005
\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)
\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2002}-...+\frac{1}{2009}-\frac{1}{2010}\)
\(=\frac{1}{2000}-\frac{1}{2010}\)
\(=\frac{1}{402000}\)
A=2001.2002.2003.2004+1
ta có:2001.2002.2003.2004 có tận cùng là 4
=>2001.2002.2003.2004=10k+4
=>A=10k+4+1=10k+5=5(2k+1) chia hết cho 5
=>A là hợp số
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
vì 2000.2001.2002.2003 là số chẵn vì chữ số tận cùng là 0
mà số nguyên tố chẵn duy nhất là 2 => 2000.2001.2002.2003 là hợp số