K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

ta có : M = 34n+4-43n+3 = 34.(n+1) - 43.(n+1)= 81n+1 -64n+1= (81 -64)n+1=17n+1 ⋮ 17 với mọi n

vậy đpcm

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

21 tháng 10 2016

Ta có :

\(A=3^{4\left(n+1\right)}-4^{3\left(n+1\right)}=81^{n+1}-64^{n+1}\)

\(=\left(81-64\right)\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)

\(=17\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)chia hết cho 17

Vậy ...

1 tháng 8 2019

n = 0 thì nó ko đúng?!?

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)

4 tháng 10 2016

 xét n^2+4n+3= n^2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n^2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n^2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2 Vậy ...... chia hết cho 8