Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(2n\right)^2=4n^2>4n^2-1=\left(2n-1\right)\left(2n+1\right)\)
\(\Rightarrow\frac{1}{\left(2n\right)^2}< \frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(P_n^2=\frac{1^23^25^2...\left(2n-1\right)^2}{2^24^26^2...2n^2}< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3.3.5.5.7...\left(2n-1\right)\left(2n+1\right)}\)
\(P^2< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3^2.5^2...\left(2n-1\right)^2\left(2n+1\right)}=\frac{1}{2n+1}\)
\(\Rightarrow P< \frac{1}{\sqrt{2n+1}}\)
2)
a) Ta có: \(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}2n-1=1\Rightarrow n=1\\2n-1=3\Rightarrow n=2\end{matrix}\right.\)
Vậy n=1 hoặc n=2
b) Ta có: \(3n+2⋮n-1\)
\(\Rightarrow\left(3n-3\right)+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=5\Rightarrow n=6\end{matrix}\right.\)
Vậy n=2 hoặc n=6
1. vì (2x-1)(y-1)=29 mà \(x,y\in N\)\(\Rightarrow\left\{{}\begin{matrix}2x-1>0\\y-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>1\end{matrix}\right.\)
ta có:\(\left(2x-1\right)\left(y-1\right)=29\Rightarrow2x-1=\dfrac{29}{y-1}\)
vì: \(x\in N\Rightarrow\dfrac{29}{y-1}\in N\)
\(\Rightarrow29⋮y-1\Rightarrow y\in\left\{2;30\right\}\)
với y=2 => x=15
với y=30 => x=1
\(2^2+4^2+...+\left(2n\right)^2=2^2\left(1^2+2^2+...+n^2\right)\)
\(=\frac{2^2.n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
\(\Rightarrow\) Sai, nhưng số 1 và số 4 khi viết trên bảng rất giống nhau, bạn có chắc mình ko nhìn nhầm và chép nhầm đề ko?
\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
Do \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>0\) nên \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>1\) (đúng)
Lại nghi ngờ bạn chép nhầm đề, ko ai cho đề bài kiểu này cả, hoặc là vế phải là số 2, hoặc vế trái bạn thừa số 1 đầu tiên
Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên là?
A. 8,125
B. 130
C. 8
D. 8,5
C nha bn
\(VP=8x^3-48x^2+58x-4x^2+24x-29\)
\(=2x\left(4x^2-24x+29\right)-\left(4x^2-24x+39\right)\)
\(=\left(2x-1\right)\left(4x^2-24x+29\right)\)
\(pt\Leftrightarrow\left(2x-1\right)\sqrt{2x-1}=\left(2x-1\right)\left(4x^2-24x+29\right)\)
\(\Leftrightarrow\left(2x-1\right)\left[\sqrt{2x-1}-4x^2+24x-29\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\\sqrt{2x-1}-4x^2+24x-29=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\\sqrt{2x-1}=4x^2+24x-29=0\left(2\right)\end{array}\right.\)
Tới đây giải pt (2) ra
ta có bài toán đúng với n=1
giả sử đúng với n=k
xét n=k+1:
\(29^{2\left(k+1\right)}-140\left(k+1\right)-1\)
\(=841.29^{2k}-140k-141=700.29^{2k}+141.\left(29^{2k}-140k-1\right)+19600k\)
mà \(\hept{\begin{cases}700.29^{2k}⋮700\\140\left(29^{2k}-140k-1\right)⋮700\\19600⋮700\end{cases}}\)bài toán đúng với n=k+1
Vậy theo nguyên lý quy nạp ta chứng minh được bài toán