K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
13 tháng 3 2021

ta có bài toán đúng với n=1

giả sử đúng với n=k

xét n=k+1:

\(29^{2\left(k+1\right)}-140\left(k+1\right)-1\)

\(=841.29^{2k}-140k-141=700.29^{2k}+141.\left(29^{2k}-140k-1\right)+19600k\)

mà \(\hept{\begin{cases}700.29^{2k}⋮700\\140\left(29^{2k}-140k-1\right)⋮700\\19600⋮700\end{cases}}\)bài toán đúng với n=k+1

Vậy theo nguyên lý quy nạp ta chứng minh được bài toán

NV
24 tháng 9 2019

Ta có \(\left(2n\right)^2=4n^2>4n^2-1=\left(2n-1\right)\left(2n+1\right)\)

\(\Rightarrow\frac{1}{\left(2n\right)^2}< \frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(P_n^2=\frac{1^23^25^2...\left(2n-1\right)^2}{2^24^26^2...2n^2}< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3.3.5.5.7...\left(2n-1\right)\left(2n+1\right)}\)

\(P^2< \frac{1^23^25^2...\left(2n-1\right)^2}{1.3^2.5^2...\left(2n-1\right)^2\left(2n+1\right)}=\frac{1}{2n+1}\)

\(\Rightarrow P< \frac{1}{\sqrt{2n+1}}\)

21 tháng 11 2017

2)

a) Ta có: \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}2n-1=1\Rightarrow n=1\\2n-1=3\Rightarrow n=2\end{matrix}\right.\)

Vậy n=1 hoặc n=2

b) Ta có: \(3n+2⋮n-1\)

\(\Rightarrow\left(3n-3\right)+5⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=5\Rightarrow n=6\end{matrix}\right.\)

Vậy n=2 hoặc n=6

21 tháng 11 2017

1. vì (2x-1)(y-1)=29 mà \(x,y\in N\)\(\Rightarrow\left\{{}\begin{matrix}2x-1>0\\y-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>1\end{matrix}\right.\)

ta có:\(\left(2x-1\right)\left(y-1\right)=29\Rightarrow2x-1=\dfrac{29}{y-1}\)

vì: \(x\in N\Rightarrow\dfrac{29}{y-1}\in N\)

\(\Rightarrow29⋮y-1\Rightarrow y\in\left\{2;30\right\}\)

với y=2 => x=15

với y=30 => x=1

NV
15 tháng 6 2019

\(2^2+4^2+...+\left(2n\right)^2=2^2\left(1^2+2^2+...+n^2\right)\)

\(=\frac{2^2.n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)

\(\Rightarrow\) Sai, nhưng số 1 và số 4 khi viết trên bảng rất giống nhau, bạn có chắc mình ko nhìn nhầm và chép nhầm đề ko?

\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)

Do \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>0\) nên \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>1\) (đúng)

Lại nghi ngờ bạn chép nhầm đề, ko ai cho đề bài kiểu này cả, hoặc là vế phải là số 2, hoặc vế trái bạn thừa số 1 đầu tiên

21 tháng 1 2022

Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên là?

A. 8,125   

B. 130

C. 8

D. 8,5

C nha bn

21 tháng 1 2022

ý C nha bạn

HT

18 tháng 8 2016

\(VP=8x^3-48x^2+58x-4x^2+24x-29\)

\(=2x\left(4x^2-24x+29\right)-\left(4x^2-24x+39\right)\)

\(=\left(2x-1\right)\left(4x^2-24x+29\right)\)

\(pt\Leftrightarrow\left(2x-1\right)\sqrt{2x-1}=\left(2x-1\right)\left(4x^2-24x+29\right)\)

\(\Leftrightarrow\left(2x-1\right)\left[\sqrt{2x-1}-4x^2+24x-29\right]=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-1=0\\\sqrt{2x-1}-4x^2+24x-29=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\\sqrt{2x-1}=4x^2+24x-29=0\left(2\right)\end{array}\right.\)

Tới đây giải pt (2) ra 

 

 

 

18 tháng 8 2016

con x3 ở đâu thế