K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

a) kết quả bằng 363 : có.

b) kết quả bằng 117 : không.

c, kết quả bằng 2385 : có.

d) kết quả bằng 2828 : không.

mik ghi cả kết quả ra để bạn xem đúng ko nhé.

25 tháng 11 2015

bài này bạn tự nghĩ đi

a: A=(1+4+4^2)+4^3(1+4+4^2)+...+4^21(1+4+4^2)

=21(1+4^3+...+4^21) chia hết cho 3

b: A=21(1+4^3+...+4^21)

mà 21 chia hết cho 7

nên A chia hết cho 7

c: A=(1+4+4^2+4^3)+4^4(1+4+4^2+4^3)+...+4^20(1+4+4^2+4^3)

=85(1+4^4+...+4^20) chia hết cho 17

11 tháng 11 2018

1.

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5

Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4

Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120

2.(Tương tự)

3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16

Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)

Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.

4.

Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128

Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)

Do đó tích chia hết cho 3*128=384

5.

\(m^3-m=m\left(m-1\right)\left(m+1\right)\)

Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

Nên \(m^3-m\)chia hết cho 2*3=6

14 tháng 7 2019

 a) (Dễ :v)Trong 2 STNLT có 1 số chẵn, 1 số lẻ

  Mà số chẵn thì chia hết cho 2 => Cái cần chứng minh

14 tháng 7 2019

b) Có : ab = 10a + b

            ba = 10b + a       => ab + ba = 10a + 10b + a+b = (10a +a) + (10b+b)  = 11a + 11b = 11(a+b)

Vì a,b là các cs => a,b \(\in\)N => 11(a+b) \(⋮\)11 => ab + ba \(⋮\)11

23 tháng 10 2015

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9