Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Do 20a + 11b chia hết cho 17 => 5.( 20a + 11b )
=> 100a + 55b chia hết cho 17
=> ( 83a + 38b ) + 17a + 17b chia hết cho 17
Vì 17a chia hết cho 17 với mọi a thuộc N (1)
17b chia hết cho 17 với mọi b thuộc N (2)
10.( 20a + 11b ) chia hết cho 17 ( nt ) (3)
từ (1), (2) và (3) => 83a + 38b chia hét cho 17 ( tính chất chia hết của một tổng )
#~Will~be~Pens~#
Lời giải:
$2a-5b+6c\vdots 17$
$\Leftrightarrow 2a-5b-17b+6c\vdots 17$
$\Leftrightarrow 2a-22b+6c\vdots 17$
$\Leftrightarrow 2(a-11b+3c)\vdots 17$
$\Leftrightarrow a-11b+3c\vdots 17$ (do $(2,17)=1$)
Ta có đpcm.
đặt 3a+2b=x ; 10a+b=y
Ta có:x chia hết cho17; cần chứng minhy chia hết cho 17
Xét :10x-3y=10.(3a+2b)-3(10a+b)=30a+20b-30a+3b=17b chia hết cho 17(vì 17 chia hết cho 17)
Nhận tháy:x chia hết cho 17 => 10x chia hết cho 17=>3y chia hết cho 17 mà(3;17)=1 =>y chia hết cho 17 =>10a+b chia hết cho17
VẬY:10a+b chia hết cho 17=>ĐPCM
Ta có: \(5x+2y⋮17\)
\(\Leftrightarrow5x+2y+17\left(x+y\right)⋮17\)
\(\Leftrightarrow22x+19y⋮17\)
\(\Leftrightarrow\left(22x+19y\right)-\left(5x+2y\right)6⋮17\)
\(\Leftrightarrow-8x+7y⋮17\)
\(\Leftrightarrow9x+7y⋮17\)( đpcm)
Ta có: \(43^{43}=\left(43^4\right)^{10}.43^3=\left(...01\right)^{10}.43^3=\left(...1\right).79507=\left(...7\right)\\ \)
\(17^{17}=\left(17^4\right)^4.17=\left(...01\right)^4.17=\left(...1\right).17=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(...7\right)-\left(...7\right)=\left(...0\right)⋮10\)
1,Ta có:4(2a+3b)+(9a+5b)
=8a+12b+9a+5b
=17a+17b chia hết cho 17
Vì (2a+3b) chia hết cho 17
=>4(2a+3b) chia hết cho 17
=>9a+5b chia hết cho 17
=>đpcm
Ta thấy:43 đồng dư với 3(mod 10)
=>432 đồng dư với 32(mod 10
=>432 đồng dư với 9(mod 10)
=>432 đồng dư với -1(mod 10)
=>(432)21 đồng dư với (-1)21(mod 10)
=>4342 đồng dư với -1(mod 10)
=>4342 đồng dư với 9(mod 10)
=>4342.43 đồng dư với 9.43(mod 10)
=>4343 đồng dư với 7(mod 10)
17 đồng dư với 7(mod 10)
=>172 đồng dư với 72(mod 10)
=>172 đồng dư với 9(mod 10)
=>172 đồng dư với -1(mod 10)
=>(172)8 đồng dư với (-1)8(mod 10)
=>1716 đồng dư với 1(mod 10)
=>1716.17 đồng dư với 1.17(mod 10)
=>1717 đồng dư với 7(mod 10)
=>4949-1717 đồng dư với 7-7(mod 10)
=>4949-1717 đồng dư với 0(mod 10)
=>4949-1717 chia hết cho 10
=>ĐPCM
Áp dụng tính chất:
(....3)4n = (....1) và (....7)4n = (....1) . kí hiệu (...3) là số có tận cùng là chữ số 3
Ta có: 4343 = 4340 .433 = (....1).(...7) = (....7)
1717 = 1716. 17 = (....1).17 = (...7)
=> 4343 - 1717 = (.....0) chia hết cho 10
vậy...
\(2^{12}+1=\left(2^4+1\right)\left(2^8-2^4+1\right)=17\cdot\left(2^8-2^4+1\right)⋮17\)