Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3
(2^1 + 2^2) + (2^3+2^4)+.....+(2^99+2^100)
2.(1+2)+2^3.(1+2)+....+2^99(1+2)
(2+2^3+...+2^99).(1+2)
(2+2^3+...+2^99).3
Vì 3 chia hết cho 3 nên (2+2^3+...+2^99).3 chia hết cho 3
hay 2^1 + 2^2 +2^3 +....+2^99+2^100 chia hết cho 3
\(1+2+3+...+98+99+100\)
\(=\frac{\left(100+1\right)\left[\left(100-1\right):1+1\right]}{2}\)
\(=\frac{101.100}{2}=5050\)
Mà 5050 chia 9 dư 1
Đặt A=2+22+23+...+298+299+2100
=>A=(2+22+23)+...+(298+299+2100)
=>A=2.(1+2+22)+...+298.(1+2+22)
=>A=2.7+...+298.7
=>A=7.(2+...+298)
=>A chia hết cho 7
=>A chia 7 dư 0
Tổng = 2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^98+2^99+2^100)
= 2+2.(2+2^2+2^3)+2^4.(2+2^2+2^3)+....+2^97.(2+2^2+2^3)
= 2+2.14+2^4.14+....+2^97.14
= 2+14.(2+2^4+...+2^97)
Vì 14 chia hết cho 7 =. 14(2+2^4+...+2^97) chia hết cho 7
Mà 2 chia 7 dư 2
=> tổng trên chia 7 dư 2
k mk nha
Nhóm 3 số hạng liền nhau:
(21 + 22 + 23) + ... + (297 + 298 + 299) + 2100
= 2(1 + 2 + 22) + ... + 297 (1 + 2 + 22) + 2100
= 2.7 + ... + 297 . 7 + 2100
Vậy: Số dư của tổng trên chia cho 7 bằng số dư của 2100 chia 7.
Ta có: 23 = 8 chia hết cho 7 dư 1.
=> 299 = (23)33 chia cho 7 dư 1.
=> 2100 = 2.299 chia cho 7 dư 2.
Vậy: Tổng đã chia cho 7 dư 2.
chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7
2 + (2\(^2\)+2\(^3\)+2\(^4\)) +..+ (2\(^{98}\)+2\(^{99}\)+2\(^{100}\))
2 + 7.2\(^2\) +..+ 7.2\(^{98}\) => A chia 7 dư 2