Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
Gọi d là USC của n+7 và 3n+22 nên
\(n+7⋮d\Rightarrow3\left(n+7\right)=3n+21⋮d\)
\(3n+22⋮d\)
\(\Rightarrow3n+22-\left(3n+21\right)=1⋮d\Rightarrow d=1\)
n+7 và 3n+22 có 1 ước chung duy nhất là 1 nên chúng nguyên tố cùng nhau
a) Gọi ƯCLN(3n+1,6n+1)=d
=> 3n+1 và 6n+1 chia hết chưa d
=> 2(3n+1) và 6n+1 chia hết chưa d
=>6n+2 và 6n+1 chia hết cho d
=>(6n+2)-(6n+1)=1 chia hết cho d
=>d=1
=> 3n+1 và 6n+1 nguyên tố cùng nhau
b, Gọi ƯCLN(2n+3,3n+4)=d
=>2n+3 và 3n+4 chia hết cho d
=>3(2n+3) và 2(3n+4) chia hết cho d
=>6n+9 và 6n+8 chia hết cho d
=>(6n+9)-(6n+8)=1 chia hết cho d
=>d=1
=>2n+3 và 3n+4 nguyên tố cùng nhau
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
đề bài này bạn xem lại nhé, cứ thử cho n là số lẻ => 3n+1 là số chẵn => 3n+1 chia hết cho 2
mà 4n luôn chia hết cho 2 với n là số nguyên
=> 4n và 3n+1 có ước chung là 2 với n lẻ
=> 4n và 3n+1 nguyên tố cùng nhau á ???
Gọi d là ƯCLN(n + 1, 3n + 4 )
\(\Rightarrow n+1⋮d\Rightarrow3.\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)
3n + 4: Giữ nguyên
\(\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\left[3n+4-3n-3\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy n+1 và 3n+4 là số nguyên tố cùng nhau
Gọi d là ƯCLN(5n+7, 3n+4), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+7⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+7\right)⋮d\\5\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+21⋮d\\15n+20⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+21\right)-\left(15n+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+7,3n+4\right)=1\)
\(\Rightarrow\) 5n+7 và 3n+4 là hai số nguyên tố cùng nhau.
gọi ước chung lớn nhất của n + 1 và 3n + 4 là d
ta có n+ 1 chia hết cho d
3n+ 4 chia hết cho d
ta có 3n + 4 chia hết cho d
ta có n + 1 chia hết cho d
=> 3( n + 1 ) cha hết cho d
=> 3n + 3 chia hết ch d
=> ( 3n + 4 ) - ( 3n + 3 ) chia hết cho d
hay 3n + 4 - 3n - 3
=> 1 chia hết cho d
=> d = 1
ta có ước chung lớn nhất của n + 1 và 3n + 4 là 1
=> n + 1 và 3n + 4 là 2 số nguyên tố cùng nhau
Bạn sai rồi đó
n+1và3n+4 phải thuộc ƯCLN =1
Rồi mới gọi nha
Đó là quan điểm của mik