K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

https://olm.vn/hoi-dap/detail/13633158853.html

Tham khảo link này nha

7 tháng 2 2020

thank ban nhiu :))

27 tháng 9 2019

calculator

27 tháng 9 2019

calculator dùng đi

15 tháng 7 2016

Đặt A = 1/3 + 2/3² + 3/3³ + 4/3^4 + ... + 100/3^100 

=> 3A= 1 + 2/3 + 3/3² + 4/3³ + .... + 100/3^99 

=> 3A-A = 1 + (2/3 - 1/3) + (3/3² - 2/3²) +...+ (100/3^99 - 99/3^99) - 100/3^100

=> 2A= 1+ 1/3 + 1/3² + 1/3³ +...+ 1/3^99 - 100/3^100

Đặt B = 1/3 + 1/3² + 1/3³ +...+ 1/3^99 

=> 3B = 1 + 1/3 + 1/3² + 1/3³ +...+ 1/3^98

=> 2B = 1 - 1/3^99 => B = (1 - 1/3^99)/2

Thay vào 2A => 2A= 1+ 1/2 - 1/(2x3^99) - 100/3^100 < 1+ 1/2 = 3/2 

=> A < 3/4

....

15 tháng 7 2016

Ý Trước

23 tháng 8 2017

Hỏi đáp Toán

23 tháng 8 2017

Đặt A \(=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)

\(\Rightarrow3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\)

\(\Rightarrow2A=1+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}-\dfrac{1}{3^{99}\times2}-\dfrac{100}{3^{100}}\)

\(\Rightarrow A=\dfrac{3}{4}-\dfrac{1}{3^{99}\times4}-\dfrac{50}{3^{100}}< \dfrac{3}{4}\)

Vậy ...

Chúc Các Bạn Học Tốt !

11 tháng 4 2016

ds:1/100

11 tháng 4 2016

1/100 nha bạn