Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1111112.a + 111111112.b - 11112.c
A = 11.(101012.11 + 10101012.11 + 1012.11)
Vậy A chia hết cho 11
Ai li-ke tớ lên 50 điểm hỏi đáp trong 1 ngày đc thì tớ li-ke ng đó cả tháng
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
a) (Dễ :v)Trong 2 STNLT có 1 số chẵn, 1 số lẻ
Mà số chẵn thì chia hết cho 2 => Cái cần chứng minh
b) Có : ab = 10a + b
ba = 10b + a => ab + ba = 10a + 10b + a+b = (10a +a) + (10b+b) = 11a + 11b = 11(a+b)
Vì a,b là các cs => a,b \(\in\)N => 11(a+b) \(⋮\)11 => ab + ba \(⋮\)11
C=(1+3+32)+(33+34+35)+...+(39+310+311)
C=13+33(1+3+32)+...+39(1+3+32)
C=13+33.13+...+39.13
C=13(1+33+...+39)
Vì nó có thừa số 13 nên chia hết cho 13 (1+33+...+39 là STN)
C=(1+3+32+33)+(34+35+36+37)+(38+39+310+311)
C=40+34(1+3+32+33)+38(1+3+32+33)
C=40+34.40+38.40
=40(1+34+38)
=>C chia hết cho 40
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.