K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Dễ thấy \(2-2=3-3\) vì chúng cùng bằng 0.

Nên \(2\left(1-1\right)=3\left(1-1\right)\Leftrightarrow2=3\)

Mà 1 + 1 = 2 nên 1 + 1 = 3 (đpcm)

Vì bạn bắt chứng minh một điều vô lí nên tớ dùng điều vô lí để chứng minh nó thôi... và một bản report.

10 tháng 11 2021

??? ảo

20 tháng 1 2023

Áp dụng công thức : 

\(l=\dfrac{\pi Rn}{180}=\dfrac{\pi.4.30^o}{180^o}=\dfrac{2}{3}\pi cm\\ =>B\)

1 tháng 3 2017

Trước tiên ta chứng minh:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào bài toán ta được

\(\frac{1}{1+x^3+y^3}+\frac{1}{1+y^3+z^3}+\frac{1}{1+z^3+x^3}\le\frac{1}{1+xy\left(x+y\right)}+\frac{1}{1+yz\left(y+z\right)}+\frac{1}{1+zx\left(z+x\right)}\)

\(=\frac{xyz}{xyz+xy\left(x+y\right)}+\frac{xyz}{xyz+yz\left(y+z\right)}+\frac{xyz}{xyz+zx\left(z+x\right)}=\frac{z}{z+x+y}+\frac{x}{x+y+z}+\frac{y}{y+z+x}=1\)

11 tháng 6 2017

Áp dụng BĐT Cauchy - shwart dạng Engel ta có:

VT= (1+1+1)^2 / [2(x^3 + y^3 + z^3) +3]

=9/[2(x^3 + y^3 + z^3) +3]

mà x^3 + y^3 + z^3 >= 3abc = 3 (BĐT AM-GM)

=> VT>=9/9=1 (dpcm)

2 tháng 1 2016

\(N=\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{n^3}<\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\times\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{\left(n-1\right)n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}\)

=> ĐPCM 

16 tháng 6 2019

CMR\(\sqrt{1^3+2^3}=1+2\)

ta thấy :

\(\sqrt{1^3+2^3}\)

=\(\sqrt{\left(1+2\right)^2}\)

= \(1+2\)

Vậy => \(\sqrt{1^3+2^3}=1+2\)

10 tháng 10 2020

Đề đúng ko vậy bạn?