K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

Đặt:

\(linh=\dfrac{x}{x+y+z}+\dfrac{y}{y+z+t}+\dfrac{z}{z+t+x}+\dfrac{t}{t+x+y}\)

Giả sử: \(linh\in N\)

Điều này chứng tỏ:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+z+t}\in N\\\dfrac{z}{z+t+x}\in N\\\dfrac{t}{t+x+y}\in N\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+z+t\\z⋮z+t+x\\t⋮t+x+y\end{matrix}\right.\)

\(x;y;z;t\in N\circledast\) nên điều trên tương đương với:

\(\left\{{}\begin{matrix}x\ge x+y+z\\y\ge y+z+t\\z\ge z+t+x\\t\ge t+x+y\end{matrix}\right.\)(Không thể đồng thời xảy ra)
Nên: Điều giả sử sai,\(linh\notin N\left(đpcm\right)\)

20 tháng 10 2017

(A=dfrac{x}{x+y+z}+dfrac{y}{y+z+t}+dfrac{z}{z+t+x}+dfrac{t}{t+x+y})

Giả sử: (Ain N) thì

(left{{}egin{matrix}dfrac{x}{x+y+z}in N\dfrac{y}{y+z+t}in N\dfrac{z}{z+t+x}in N\dfrac{t}{x+y+t}in Nend{matrix} ight.) (Leftrightarrowleft{{}egin{matrix}x⋮x+y+z\y⋮y+z+t\z⋮z+t+x\t⋮t+x+yend{matrix} ight.)

(x;y;z;tin Ncircledast) nên

(left{{}egin{matrix}xge x+y+z\yge y+z+t\zge z+t+x\tge t+x+yend{matrix} ight.Leftrightarrowleft{{}egin{matrix}x+yle0\z+tle0\t+xle0\x+yle0end{matrix} ight.)

Điều trên ko thể xảy ra, (A otin N)

20 tháng 10 2017

Thấy hơi chém 0,1+0,9=1 đó thôi!

24 tháng 10 2018

\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)

\(\dfrac{a}{b}< 1\Rightarrow\) \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (Bạn chứng minh qua nhân chéo nhé)

\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)

Do \(1< M< 2\)\(1\)\(2\) là hai số tự nhiên liên tiếp

\(\Rightarrow M\notin\) N

16 tháng 6 2017

Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}=\dfrac{t}{y+x+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+t+x}=\dfrac{x+y+z+t}{y+x+z}\)+) Xét \(x+y+z+t=0\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)

\(\Rightarrow A=-1\)

+) Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

\(\Rightarrow A=1\)

Vậy A = -1 hoặc A = 1

16 tháng 6 2017

Ta có:\(\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

Nếu x+y+z+t\(\ne\)0 thì y+z+t=z+t+x=t+x+y=x+y+z

=>x=y=z=t nên P=1+1+1+1=4

Nếu X+y+z+t=0 thì P=-4

15 tháng 12 2017

Sai đề chỗ p/s cuối. Xét 2 t/h.

Oáp Z_z có gì mai ns nhé!

6 tháng 2 2018

mk ko làm cụ thể nhưng chỉ nêu hướng lm thôi nhé

bn áp dụng tích chất dãy tỉ số bằng nhau vào giả thiết, ra 1/3

sau đó suy ra x = (y+z+t)/3, y,z,t cũng làm tương tự

sau đó bạn quy đồng các mẫu của P

sau khi phân tích bn sẽ lấy kq vừa tính đc phần trên

mk nghĩ kết quả ra là 15 nhưng có thể sai

chúc bn may mắn

16 tháng 5 2017

CM: M>1

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\\ >\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\left(\text{đ}pcm\right)\)

cm : M<2

\(M< \dfrac{x}{x+y}+\dfrac{y}{x+y}+\dfrac{z}{z+t}+\dfrac{t}{z+t}=1+1=2\left(\text{đ}pcm\right)\)

Vì 1<M<2 nên M không phải là số tự nhiên

12 tháng 4 2017

Từ \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

\(x+y+z+t\ne0\) nên ta đi xét \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\). Khi đó

\(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=4\)

12 tháng 4 2017

hình như bạn làm nhầm rùi thì phải x+y+z+t khác 0 rồi sao lại x +y+z+t = 0 nữa zậy bạn

17 tháng 9 2017

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

\(M+4=\left(\dfrac{x}{x+y+z}+1\right)+\left(\dfrac{y}{x+y+t}+1\right)+\left(\dfrac{z}{y+z+t}+1\right)+\left(\dfrac{t}{x+z+t}+1\right)\)\(M+4=\dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}\)\(M+4=\dfrac{x+t+y+z+z+x+t+y}{x+y+z+t}\)

\(M+4=\dfrac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(M+4=2\)

\(M=2-4=-2\notin N\)

Ta có đpcm