Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A = 2/1.3+2/3.5+....+2/(2n-1).(2n+1)
= 1-1/3+1/3-1/5+.....+1/2n-1 - 1/2n+1
= 1-1/2n+1 < 1
=> A < 1/2
=> ĐPCM
k mk nha
a) A = \(\left(-\dfrac{1}{5}\right)^3.5^3+0,75=-\dfrac{1}{125}.125+\dfrac{3}{4}=-1+\dfrac{3}{4}=-\dfrac{1}{4}\)
b) B = \(\sqrt{49}-2.\sqrt{25}=7-2.5=-3\)
1)
b) \(\left(-0,25\right):\left(\frac{1}{2}\right)^2\)
\(=\left(-\frac{1}{4}\right):\frac{1}{4}\)
\(=-1.\)
h) \(\left(-15\right).0,23+\left(-15\right).0,77\)
\(=\left(-15\right).\left(0,23+0,77\right)\)
\(=\left(-15\right).1\)
\(=-15.\)
Chúc bạn học tốt!
\(S=\dfrac{1}{2}.\left(\dfrac{2}{\sqrt{1.3}}+\dfrac{2}{\sqrt{3.5}}+.......+\dfrac{2}{\sqrt{29.31}}\right)\)
\(S=\dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{5}}+.....-\dfrac{1}{\sqrt{29}}+\dfrac{1}{\sqrt{29}}-\dfrac{1}{\sqrt{31}}\right)\)
\(S=\dfrac{1}{2}.\left(1-\dfrac{1}{\sqrt{31}}\right)=\dfrac{1}{2}.\left(\dfrac{31-\sqrt{31}}{31}\right)=\dfrac{31-\sqrt{31}}{62}\)
\(A=\frac{2!+\sqrt{3}}{2!}+\frac{3!+\sqrt{4}}{3!}+\frac{4!+\sqrt{5}}{4!}+....+\frac{2012!+\sqrt{2013}}{2012!}\)
\(=\frac{2!}{2!}+\frac{\sqrt{3}}{2!}+\frac{3!}{3!}+\frac{\sqrt{4}}{3!}+.....+\frac{2012!}{2012!}+\frac{\sqrt{2013}}{2012!}\)
\(=2012+\left(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+....+\frac{\sqrt{2011}}{2012!}\right)\)
Mà \(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+...+\frac{\sqrt{2013}}{2012!}>0\)
\(\Rightarrow A>2012+0=2012\)
Đề sai nên t sửa lại r nhé
Ta có:
\(\sqrt{2}+2=2+\sqrt{2}=3,414\)
Mà 3,414 < 3,5, nên:
\(\sqrt{2}+2< 3.5\)
khong duppc tinh ra so ban oi