\(P\left(x\right)=2x^2+2x+\frac{5}{4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

\(P\left(x\right)=2x^2+2x+\frac{5}{4}=\left(2x^2+x\right)+\left(x+\frac{1}{2}\right)+\left(\frac{5}{4}-\frac{1}{2}\right)\)

\(P\left(x\right)=x\left(2x+1\right)+\frac{1}{2}\left(2x+1\right)+\frac{3}{2}\)

\(P\left(x\right)=\left(2x+1\right)\left(x+\frac{1}{2}\right)+\frac{3}{2}=\left(2x+1\right)\frac{\left(2x+1\right)}{2}+\frac{3}{2}\)

\(p\left(x\right)=\frac{\left(2x+1\right)^2}{2}+\frac{3}{2}=\frac{\left(2x+1\right)^2+3}{2}\)

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+3\ge3\Rightarrow p\left(x\right)>0\forall x\Rightarrow dpcm\)

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

9 tháng 5 2019

a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)

\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)

b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)

                                \(=6x^3-x^2-5\)

c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :

       \(6.1^3-1^2-5=0\)

Vậy x=1 là nghiệm của đa thức f(x) + g(x)

+) Thay x=-1 vào đa thức f(x) + g(x) ta được :

    \(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)

Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)

7 tháng 4 2019

\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)

                     \(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)

                       \(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)

                       \(=2x^2+x\)

+, Đặt \(2x^2+x=0\)

     \(\Leftrightarrow x.2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

                        

7 tháng 4 2019

ak bạn thêm kết kuận nha!

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0

nên x + 1/2 = 0 hoặc x-3 = 0

vậy x = -1/2 và x = 3

Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3

b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0

Vậy x = 0 hoặc x = 1

Đa thức D(x) có 2 nghiệm là x1= 0 và x= 1

c, Thay E(x) = 0

nên x3 + 8 = 0 => x3 = -8 => x = -2

Vậy đa thức E(x) có 1 nghiệm là x = -2

d, Thay F(x) =  0 nên 2x - 5 + (x-17) = 0

=> 2x - 5 + x - 17 = 0

=> 3x -22 = 0

=> 3x = 22

x = 22/3

Vậy đa thức F(x) có 1 nghiệm là x = 22/3

e, Thay C(x) = 0 nên x- 9 = 0

x2 = 9 => x = 3 hoặc x = -3

Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3

f, Thay A(x) = 0 nên x2 - 4x = 0

=> x.(x - 4) = 0

=> x = 0 và x = 4

Vậy đa thức A(x) có 2 nghiệm là x1=0 và x= 4

g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0

Vậy 2x + 4 = 0 và 7-14x =0

=> x = -2 và x = 1/2

Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2

h, G(x) = 0 nên (3x-5) - (18-6x) = 0

=> 3x - 5 - 18 + 6x = 0

=> 9x - 23 = 0

=> 9x = 23

x = 23/9

Vậy đa thức này có 1 nghiệm là x = 23/9 

7 tháng 6 2020

a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)

B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)

             <=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)

Vậy nghiệm của B(x) là -1/2 và 3

b) D(x) = \(x^2-x\)

D(x) = 0 <=> \(x^2-x=0\)

              <=> \(x\left(x-1\right)=0\)

              <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy nghiệm của D(x) là 0 và 1

c) E(x) = \(x^3+8\)

E(x) = 0 <=> x3 + 8 = 0

             <=> x3 = -8

             <=> x3 = -23

             <=> x = 3

Vậy nghiệm của E(x) là 3

d) F(x) = 2x - 5 + ( x - 17 )

F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0

             <=> 2x + x + ( -5 - 17 ) = 0

             <=> 3x - 22 = 0

             <=> 3x = 22

             <=> x = 22/3

Vậy nghiệm của F(x) là 22/3

f) A(x) = x2 - 4x 

A(x) = 0 <=> x2 - 4x = 0 

             <=> x( x - 4 ) = 0

             <=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy nghiệm của A(x) là 0 và 4

g) H(x) = ( 2x + 4 )( 7 - 14x )

H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )

              <=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

Vậy nghiệm của H(x) là -2 và 1/2

h) G(x) = ( 3x - 5 ) - ( 18 - 6x )

G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0 

              <=> 3x - 5 - 18 + 6x = 0

              <=> 3x - 23 = 0

              <=> 3x = 23 

              <=> x = 23/3

Vậy nghiệm của G(x) là 23/3

7 tháng 8 2020

\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)

\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)

16 tháng 5 2020

Dúp mk với, mk đang cần rất gấp~~~

Ai làm nhanh và đúng thì mk sẽ k cho bn đó 

16 tháng 5 2020

a) P(x) = 2x -9

=) 2x - 9 = 0

=) x = 4.5

vậy nghiệm của P(x) là 4.5

b) Q(x) = \(\left(2-\frac{2x}{3}\right)\cdot\left(-2x+1\right)\)

=) 2 - 2/3x =0 hoặc -2x + 1 = 0

=) x = 3 hoặc x =  1/2

vậy nghiệm của Q(x) là 3 hoặc 1/2

theo a nhớ cách làm là vậy còn sai thì thông cảm