Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯC(x^2 + x - 1;x^2 +x +1 )=d, suy ra x^2 + x - 1 chia hết d và x^2 +x +1 chia hết d
suy ra (x^2 + x - 1)- ( x^2 +x +1) chia hết d hay -2 chia hết d
suy ra d=1,2
vì x^2 + x - 1 và x^2 +x +1 là số lẻ nên d=1.
vậy phân số tối giản
gọi UCLN(n^3+2n;n^4+3n^2+1)=d
=> n^3+2n chia hết cho d
và n^4 +3n^2+1 chia hết cho d (1)
=> n^4+2n^2 chia hết cho d(2)
từ (1)(2)=> n^2+1 chia hết cho d
=> (n^2+1)^2 chia hết cho d <=> n^4 +2n^2+1 chia hết cho d (3)
từ (2)(3)=> 1 chia hết cho d
=> d=1 hoặc -1
=> đpcm
\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)
\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên
\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
Vậy B có giá trị là 1 số tự nhiên.
Gọi ƯCLN(2018+1 ;2019+1)=d( d khác 0 )
suy ra 2018+1 chia hết cho d và 2019+1 chia hết cho d
suy ra (2018+1)-(2019+1 chia hêh cho d
suy ra (2018+1-2019-1) chia hết cho d
Suy ra (-1) chia hh cho d
Suy ra ƯCLN (2018+1;2019+1)=-1
Suy ra :2818+1/2019+1 là phân số tối giản
Vậy ................................................................
Bạn bên dưới ơi, "!" là giai thừa nha