K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

đề là \(x^4+4x^2+5\) ak

ta có\(x^4\ge0\forall x\)

        \(4x^2\ge0\forall x\)

\(\Rightarrow\)\(x^4+4x^2+5\ge5\forall x\)

\(\Rightarrow\)đa thức trên vô nhiệm

9 tháng 5 2019

Ta có: \(\hept{\begin{cases}x^4\ge0\\4x^2\ge0\end{cases}}\Rightarrow x^4+4x^2+5\ge5\)

Mà \(x^4+4x^2+5=0\) nên đa thức vô nghiệm (đpcm)

19 tháng 4 2020

\(x^2+x+2=x^2+2.x+1+1-x=x^2+2.x.1+1^2+1-x\)

\(=\left(x+1\right)^2+1-x\)

Mk chỉ lm đc vậy thôi

19 tháng 4 2020

\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )

6 tháng 4 2017

(Đây là mẹo khi làm những dạng bài cm vô nghiệm:thường ta sẽ tách đôi hạng tử  bậc lẻ ( ở đa thức này là -3x) và biến đổi thành bình phương của 1 số cộng với 1 số khác lớn hơn 0)

Cách làm nó như thế này:

Ta có : A =  x^2 - 3x +5

= x^2 - 3/2.x - 3/2.x + 5

= x(x-3/2)  - 3/2.x + 5

( lúc này để có bình phương, ta sẽ tách thằng 5 ra.)

A= x(x-3/2) - 3/2. x  +(3/2. 3/2 + 3,75)

= x(x-3/2) - 3/2(x-3/2) + 3,75

=(x-3/2)^2 + 3,75

=> A >0

Vậy đa thức A vô nghiệm

15 tháng 5 2017

Cho 2x-3 =0

=> 2x-3 =0

2x=3

x= 3/2

a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!

nghĩ thui

16 tháng 4 2016

bạn làm cho mình câu b nhé

3 tháng 4 2022

Có: \(-5-4x^2=0\)

\(5+4x^2=0\)

\(4x^2=-5\left(vl\right)\)

=> Đa thức vô nghiệm

3 tháng 4 2022

Ta cho:  P\(_{\left(x\right)}\)=\(-5-4x^2=0\)

\(4x^2=-5-0\)

\(4x^2-5\)

\(x^2\)=\(\dfrac{-5}{4}\)

Vì không có số nào bình phương là số âm

=> Đa thức \(P_{\left(x\right)}\)không có nghiệm