K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

câu 2:<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

11 tháng 7 2016

câu 1:(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c3^+3(a+b)(ab+ac+bc+c2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

CHÚC BẠN HỌC TỐT^^

23 tháng 9 2018

Sorryyyyyyyyyyyy nha mik mới lp 6 ak!

23 tháng 9 2018

\(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

22 tháng 6 2017

\(\left[a^2+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]-\left(a+b+c\right)^3\)

\(=\left(a^3+b^3+c^3+\left(3a+3b\right)\cdot\left(b+c\right)\cdot\left(c+a\right)\right)-\\ \left(\left(a+b\right)^2+3c\cdot\left(a+b\right)^2+3\left(a+b\right)\cdot c^2+c^3\right)\)

\(=\left(a^3+b^3+c^3+\left(3ab+3ac+3b^2+3bc\right)\cdot\left(c+a\right)\right)-\\ \left(a^2+3a^2b+3ab^2+b^3+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2+c^3\right)\)

\(=\left(a^3+b^3+c^3+3abc+3a^2b+3ac^2+3a^2c+3ab^2+3bc^2\cdot3bc^2+3abc\right)-\\ \left(a^3+3a^2b+3ab^2+b^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2+c^3\right)\)

\(=\left(a^3+b^3+c^3+6abc+3a^2b+3ac^2+3a^2c+3b^2c+3ab^2+3bc^2\right)-\\ a^3-3a^2b-3ab^2-b^3-3a^2c-6abc-3b^2c-3ac^2-3bc^2-c^3\)

\(=a^3+b^3+c^3+6abc+3a^2+3ac^2+3a^2c+3ab^2+3bc^2-a^3-\\ 3a^2b-3ab^2-b^3-3a^2c-6abc-3b^2c-3ac^2-3bc^2-c^3\)

\(=\left(a^3-a^3\right)+\left(b^3-b^3\right)+\left(c^3-c^3\right)+\left(6abc-6abc\right)+\left(3a^2b-3a^2b\right)\\ +\left(3ac^2-3ac^2\right)+\left(3a^2c-3a^2c\right)+\left(3ab^2-3ab^2\right)+\left(3ab^2-3ab^2\right)+\left(3bc^2-3bc^2\right)\)

\(=0\)

=> \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

22 tháng 6 2017

https://olm.vn/hoi-dap/question/161510.html

9 tháng 5 2016

sách nâng cao phát triển , tìm phần bđt ấy

a)Áp dụng bđt cô si Ta có : \(x+y\ge2\sqrt{xy}\)

                 \(y+z\ge2\sqrt{yz}\)

               \(x+z\ge2\sqrt{xz}\)

Nên : \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{xy.yz.xz}=8\sqrt{x^2y^2z^2}=8xyz\)

\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3\)

\(=\left(a+b\right)^3+3\cdot c\cdot\left(a+b\right)^2+3\cdot c^2\left(a+b\right)+c^3\)

\(=a^3+3a^2b+3ab^2+b^3+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2+c^3\)

\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

15 tháng 9 2016

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

15 tháng 9 2016

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm