Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-3}{6}=\frac{2y+10}{10}=\frac{5z-10}{15}=\frac{3x+2y-5z+17}{1}=\frac{3x+2y-5z+16+1}{1}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{y+5}{5}=1\\\frac{z-2}{3}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=0\\z=5\end{matrix}\right.\)
\(\Rightarrow P=3^{2019}+5^{2019}\)
Ta có \(3\equiv-1\left(mod4\right)\Rightarrow3^{2019}\equiv-1\left(mod4\right)\)
\(5\equiv1\left(mod4\right)\Rightarrow5^{2019}\equiv1\left(mod4\right)\)
\(\Rightarrow P\equiv\left(-1+1\right)\left(mod4\right)\Rightarrow P\equiv0\left(mod4\right)\Rightarrow P⋮4\)
Ta có: 352019-352018 = 352018(35-1)
= 352018.34
Vì 34 chia hết cho 17 nên suy ra 352018.34 chia hết cho 17
Vậy 352019-352018 chia hết cho 17.
Ta có: \(2019^{2020}=\left(2019\right)^{2.1010}=4038^{1010}⋮4038\)
\(2019^{2019}⋮4038̸\)
=> \(2019^{2020}-2019^{2019}⋮4038̸\)( Áp dụng tính chất một hiệu chia hết cho 1 số ) ( Vô lí )
Vậy đề bài bị sai.
b: \(B=4^{30}+5^{30}=\left(4^2+5^2\right)\cdot A=41\cdot A⋮41\)
c: \(C=39^{13}+39^{20}=39^{13}\left(1+39^7\right)=39^{13}\left(39+1\right)\cdot G=39^{13}\cdot40\cdot G⋮40\)
f: \(=8\left(16^n-1\right)=8\left(16-1\right)\cdot H=120\cdot H⋮120\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)=> \(\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
=> (x+y+z)(xy+yz+zx) = xyz
=> \(x^2y+xy^2+y^2z+yz^2+zx^2+z^2x+2xyz=0\)
=> (x+y)(y+z)(z+x) = 0
=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: x = -y
=> \(\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{\left(-y\right)^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)
=> \(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{\left(-y\right)^{2019}+y^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)
=> ĐPCM
Tương tự với TH2 và TH3