cíu zứi
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a:

ĐKXĐ: \(x\ne\pm y\)

4(x+y)=5(x-y)

=>\(\dfrac{x+y}{5}=\dfrac{x-y}{4}=k\)

=>\(x+y=5k;x-y=4k\)

\(\dfrac{40}{x+y}+\dfrac{40}{x-y}=9\)

=>\(\dfrac{40}{5k}+\dfrac{40}{4k}=9\)

=>\(\dfrac{8}{k}+\dfrac{10}{k}=9\)

=>18/k=9

=>k=2

=>\(x+y=10;x-y=8\)

=>\(\left\{{}\begin{matrix}x+y+x-y=10+8=18\\x-y=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=18\\x-y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=x-8=1\end{matrix}\right.\)(nhận)

b: \(\left\{{}\begin{matrix}3\left(4x-7y\right)-4\left(x-y\right)=-12\\5\left(2x+3y\right)-3\left(4x-y\right)=58\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-21y-4x+4y=-12\\10x+15y-12x+3y=58\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x-17y=-12\\-2x+18y=58\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}8x-17y=-12\\-8x+72y=232\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}55y=220\\8x-17y=-12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=4\\8x=-12+17y=-12+17\cdot4=56\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=7\\y=4\end{matrix}\right.\)

d:

ĐKXĐ: \(x\ne\pm2y\)

 \(\left\{{}\begin{matrix}\dfrac{5\left(x-1\right)}{x+2y}+\dfrac{3\left(y+1\right)}{x-2y}=8\\\dfrac{20\left(x-1\right)}{x+2y}-7\cdot\dfrac{\left(y+1\right)}{x-2y}=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{20\left(x-1\right)}{x+2y}+\dfrac{12\left(y+1\right)}{x-2y}=32\\\dfrac{20\left(x-1\right)}{x+2y}-\dfrac{7\left(y+1\right)}{x-2y}=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{19\left(y+1\right)}{x-2y}=38\\\dfrac{20\left(x-1\right)}{x+2y}-\dfrac{7\left(y+1\right)}{x-2y}=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{y+1}{x-2y}=2\\\dfrac{20\left(x-1\right)}{x+2y}=-6+7\cdot2=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=y+1\\20\left(x-1\right)=8\left(x+2y\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-5y=1\\20x-20=8x+16y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-5y=1\\12x-16y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12x-30y=6\\12x-16y=20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-14y=-14\\2x-5y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\2x=5y+1=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)(nhận)

e: \(\left\{{}\begin{matrix}x+3y-5=0\\\left(x-1\right)^2-\left(y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y+5\\\left(-3y+5-1\right)^2-\left(y+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3y+5\\\left(-3y+4\right)^2-\left(y+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3y+5\\\left(3y-4\right)^2-\left(y+1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3y+5\\\left(3y-4-y-1\right)\left(3y-4+y+1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3y+5\\\left(2y-5\right)\left(4y-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3y+5\\\left[{}\begin{matrix}2y-5=0\\4y-3=0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=\dfrac{5}{2}\\x=-3y+5=-3\cdot\dfrac{5}{2}+5=-\dfrac{15}{2}+5=-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{3}{4}\\x=-3y+5=-3\cdot\dfrac{3}{4}+5=-\dfrac{9}{4}+5=\dfrac{11}{4}\end{matrix}\right.\end{matrix}\right.\)

c: TH1: x>=2

Hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}x-2+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+2\left|y-1\right|=11\\x+\left|y-1\right|=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y-1\right|=12\\x+\left|y-1\right|=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1-12=-13\left(loại\right)\\\left|y-1\right|=12\end{matrix}\right.\)

=>Loại

TH2: x<2

Hệ phương trình sẽ trở thành:

\(\left\{{}\begin{matrix}-x+2+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x+2\left|y-1\right|=7\\x+\left|y-1\right|=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3\left|y-1\right|=6\\x+\left|y-1\right|=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y-1\right|=2\\x=-1-2=-3\left(nhận\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-3\\\left[{}\begin{matrix}y-1=2\\y-1=-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\\left[{}\begin{matrix}y=3\\y=-1\end{matrix}\right.\end{matrix}\right.\)

NV
6 tháng 3 2023

1.

a. Em tự giải

b.

\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)

Để \(x+y=7\Rightarrow m+1+2m-3=7\)

\(\Rightarrow3m=9\Rightarrow m=3\)

NV
6 tháng 3 2023

2.

a. Em tự giải

b.

Phương trình có 2 nghiệm khi:

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)

Ta có:

\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)

\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)

\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)

Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)

\(\Rightarrow P\ge40\)

Vậy \(P_{min}=40\) khi \(m=-3\)

(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

8 tháng 8 2023

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)

8 tháng 8 2023

Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

3 tháng 8 2023

Đáp án b

Các hình màu xanh là phản chiếu của các hình máu cam trong gương.

3 tháng 8 2023

Nhìn sơ sơ đoán là chọn B

Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

NV
20 tháng 1 2024

a. Câu này đơn giản em tự giải

b.

Xét hai tam giác OIM và OHN có:

\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)

\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)

Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)

Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)

\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)

\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)

c.

Xét hai tam giác OAI và ONA có:

\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)

\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))

\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)

Xét hai tam giác OCN và OIC có:

\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)

\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C

\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)

Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:

\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)

O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC

\(\Rightarrow OH=\dfrac{1}{2}BC\)

Xét hai tam giác OHN và EBC có:

\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)

\(\Rightarrow BC^2=2HN.EB\) (2)

(1);(2) \(\Rightarrow BN.BH=HN.BE\)

\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)

\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

NV
20 tháng 1 2024

loading...

22 tháng 7 2023

Các phần quà em nhận được đến giừo là 11 thẻ cào và 5 chiếc cốc và 1 bình giữ nhiệt ạ

22 tháng 7 2023

Mấy bạn giàu quá, em thì chỉ có chừng này thôi ạ :')loading...

17 tháng 7 2023

!?!?!?!?!?!?!?!

NV
16 tháng 1 2024

loading...

NV
16 tháng 1 2024

4c.

Do M là giao điểm 2 tiếp tuyến tại A và B, theo tính chất hai tiếp tuyến cắt nhau 

\(\Rightarrow\widehat{OMN}=\widehat{OMB}\)

Mà \(MB||NO\) (cùng vuông góc BC) \(\Rightarrow\widehat{OMB}=\widehat{MON}\) (so le trong)

\(\Rightarrow\widehat{OMN}=\widehat{MON}\)

\(\Rightarrow\Delta OMN\) cân tại N

\(\Rightarrow MN=ON\)

Cũng theo 2 t/c 2 tiếp tuyến cắt nhau \(\Rightarrow MA=MB\)

Do MD là tiếp tuyến của (O) tại A \(\Rightarrow OA\perp MD\)

Áp dụng hệ thức lượng trong tam giác vuông OND với đường cao OA:

\(ON^2=NA.ND\Rightarrow MN^2=NA.ND\)

\(\Rightarrow MN^2=\left(MA-MN\right).ND=\left(MB-MN\right).ND\)

\(\Rightarrow MN^2=MB.ND-MN.ND\)

\(\Rightarrow MB.ND-MN^2=MN.ND\)

\(\Rightarrow\dfrac{MB.ND-MN^2}{MN.ND}=1\)

\(\Rightarrow\dfrac{MB}{MN}-\dfrac{MN}{ND}=1\) (đpcm)

1
15 tháng 12 2022

Mình không thấy câu nào cả thì giúp kiểu gì lỗi ảnh hay sao ý 

15 tháng 12 2022

28 tháng 11 2023

Muốn đạt độ cao 30003000 m so với mặt đất thì máy bay phải bay một đoạn đường dài:

\(BC=\dfrac{AB}{sin\left(23^o\right)}=\dfrac{3000}{sin\left(23^o\right)}\approx7678\left(m\right)\)

Kết luận: Muốn đạt độ cao 30003000 m so với mặt đất thì máy bay phải bay một đoạn đường dài gần 7678m

NV
20 tháng 1 2024

\(A=\dfrac{2\left(3+\sqrt{5}\right)}{4+\sqrt{6+2\sqrt{5}}}+\dfrac{2\left(3-\sqrt{5}\right)}{4-\sqrt{6-2\sqrt{5}}}=\dfrac{2\left(3+\sqrt{5}\right)}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}+\dfrac{2\left(3-\sqrt{5}\right)}{4-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\dfrac{2\left(3+\sqrt{5}\right)}{5+\sqrt{5}}+\dfrac{2\left(3-\sqrt{5}\right)}{5-\sqrt{5}}=\dfrac{2\left(3+\sqrt{5}\right)\left(5-\sqrt{5}\right)+2\left(3-\sqrt{5}\right)\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\dfrac{40}{20}=2\)