K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Đặt biểu thức là A

+, Nếu n chẵn (mà 20182017 là số chẵn) => n + 20182017 là số chẵn => A chia hết cho 2

+, Nếu n lẻ 

(mà 2018 là số lẻ) => n + 2017 là số chẵn => A chia hết cho 2

Với mọi n thuộc N thì A chia hết cho 2

15 tháng 10 2017

đợi mk xíu

3 tháng 7 2016

Ta có: 

A = n2 + n + 1

A = n.(n + 1) + 1

a) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chia hết cho 2; 1 không chia hết cho 2

=> n.(n + 1) + 1 không chia hết cho 2

=> A không chia hết cho 2 (đpcm)

b) Do n.(n + 1) là tích 2 số tự nhiên liên tiếp => n.(n + 1) chỉ có thể tận cùng là 0; 2; 6

=> n.(n + 1) + 1 chỉ có thể tận cùng là 1; 3; 7 không chia hết cho 5

=> A không chia hết cho 5 (đpcm)

Ủng hộ mk nha ^_-

3 tháng 7 2016

\(A=n^2+n+1=n\left(n+1\right)+1\)  \(\left(n\in N\right)\)

a)Vì n và n+1 là 2 số tự nhiên liên tiếp, mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn 

=>n(n+1) là số chẵn

=>n(n+1)+1 là số lẻ

=>A ko chia hết cho 2 (đpcm)

b)Xét tận cùng của n có thể là 0;1;2;3;4;5;6;7;8;9

=>n+1 có thể có tận cùng là 1;2;3;4;5;6;7;8;9;0

=>n(n+1) có thể có tận cùng là: 0;2;6;2;0;0;2;6;0

Hay n(n+1) có thể có tận cùng là: 0;2;6

=>n(n+1)+1 có thể có tận cùng là 1;3;7

=>A ko chia hết cho 5 (đpcm)

11 tháng 1 2019

\(Giải:\)

\(Tacó:\hept{\begin{cases}11a+4b⋮3\\9a⋮3\end{cases}}\Rightarrow2a+4b⋮3\Rightarrow11a+4b-4a-8b⋮3\)

\(\Leftrightarrow7a-4b⋮3\Leftrightarrow4a⋮3\Leftrightarrow11a-4a+4b⋮3\Leftrightarrow7a+4b⋮3\left(đpcm\right)\)

11 tháng 1 2019

Ta có : 11a + 4b \(⋮\)3 \(\Rightarrow\)7 ( 11a + 4b )\(⋮\)3 Ta có : 7 ( 11a + 4b )

 \(\Rightarrow\)77a + 28b

 \(\Rightarrow\)77a + 27b + b 

 Xét tổng trên có 27b \(⋮\) 3 nên 7a + 4b \(⋮\)\(\Rightarrow\) đpcm

7 tháng 10 2015

a, Số lớn nhất trong dãy chia hết cho 2 là : 100

    Số nhỏ nhất trong dãy chia hết cho 2 là : 10

    Vì số chia hết cho 2 và 5 có tận cùng là 0 nên khoảng cách là 10 (Vì 10; 20;...;100)

    Từ 1 đến 100 có số số chia hết cho 2 và 5 là :

             ( 100 - 10 ) : 10 +1 = 10 (số)

b,Số lớn nhất chia hết cho 2 và 5 bé hơn 182 là : 180

   Số nhỏ nhất chia hết cho 2 và 5 lớn hơn 136 là : 140 

   Vì số chia hết cho 2 và 5 có tận cùng là 0 nên khoảng cách là 10

   Gọi A là tập hợp các số tự nhiên chia hết cho 2 và 5 lớn hơn 136 và bé hơn 182 

   Các số đó là :

              ( 180 -140 ) :10 +1 = 5 (số)

c, Ta thấy ( n+ 3) . (n +6) chia hết cho 2

    Mà 3+6 = 9 chia 2 dư 1 nên n + n chia 2 cũng dư 1( vì 1+1=2 chia hết cho 2)

   Các số n thỏa mãn đề bài là :

   1;3;5;7;9

26 tháng 3 2020

làm ví dụ một câu nhé mấy câu sau có j thắc mắc thì hỏi 

Ta có 3-n chí hết cho 2n+1=>9-2n chia hết cho 2n+1

         2n+1 chia hết cho 2n+1

=>2n+1+9-2nchia hết cho 2n+1

=>10 chia hết cho 2n+1

=> 2n+1 là ước của 10

kể bảng xong kết luận

Vậy .....

8 tháng 4 2018

gọi số cần tìm là a.ta có:a=4n+3

                                         =17m+9

                                         =19k+13

\(\Rightarrow a+25=4n+3+25=4n+28=4\left(n+7\right)⋮4\)   

                       \(=17m+9+25=17m+34=17\left(m+2\right)⋮17\) 

                         \(=19k+13+25=19k+38=19\left(k+2\right)⋮19\)

\(\Rightarrow a+25⋮17,4,19\)

\(\Rightarrow a+25⋮1292\)

\(\Rightarrow a=1292k-25\)\(=1292\left(k-1\right)+1267\)

do 1267<1292 nên số dư của phép chia là 1267

2,

gọi ƯCLN[2n+1,2n(n+1)] là d

\(\Rightarrow2n+1⋮d,2n\left(n+1\right)⋮d\)

\(\Rightarrow n\left(2n+1\right)⋮d,2n^2+2n⋮d\)

\(\Rightarrow2n^2+n⋮d,2n^2+2n⋮d\)

\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)

\(\Rightarrow n⋮d\)

MÀ \(2n+1⋮d,n⋮d\Rightarrow2n⋮d\Rightarrow1⋮d\Rightarrow d=1\)

suy ra đpcm

8 tháng 4 2018

thank you bạn nhiều nha !!!!!!!!!!!!